Read by QxMD icon Read

Journal of Biomolecular NMR

Biswaranjan Mohanty, Martin L Williams, Bradley C Doak, Mansha Vazirani, Olga Ilyichova, Geqing Wang, Wolfgang Bermel, Jamie S Simpson, David K Chalmers, Glenn F King, Mehdi Mobli, Martin J Scanlon
We describe a general approach to determine the binding pose of small molecules in weakly bound protein-ligand complexes by deriving distance constraints between the ligand and methyl groups from all methyl-containing residues of the protein. We demonstrate that using a single sample, which can be prepared without the use of expensive precursors, it is possible to generate high-resolution data rapidly and obtain the resonance assignments of Ile, Leu, Val, Ala and Thr methyl groups using triple resonance scalar correlation data...
October 24, 2016: Journal of Biomolecular NMR
Dmitry M Korzhnev, Dante Neculai, Sirano Dhe-Paganon, Cheryl H Arrowsmith, Irina Bezsonova
HLTF is a SWI2/SNF2-family ATP-dependent chromatin remodeling enzyme that acts in the error-free branch of DNA damage tolerance (DDT), a cellular mechanism that enables replication of damaged DNA while leaving damage repair for a later time. Human HLTF and a closely related protein SHPRH, as well as their yeast homologue Rad5, are multi-functional enzymes that share E3 ubiquitin-ligase activity required for activation of the error-free DDT. HLTF and Rad5 also function as ATP-dependent dsDNA translocases and possess replication fork reversal activities...
October 22, 2016: Journal of Biomolecular NMR
Davide Sala, Andrea Giachetti, Claudio Luchinat, Antonio Rosato
The binding of paramagnetic metal ions to proteins produces a number of different effects on the NMR spectra of the system. In particular, when the magnetic susceptibility of the metal ion is anisotropic, pseudocontact shifts (PCSs) arise and can be easily measured. They constitute very useful restraints for the solution structure determination of metal-binding proteins. In this context, there has been great interest in the use of lanthanide(III) ions to induce PCSs in diamagnetic proteins, e.g. through the replacement native calcium(II) ions...
October 22, 2016: Journal of Biomolecular NMR
Alexander S Falk, Ansgar B Siemer
Several amyloid fibrils have cores framed by highly dynamic, intrinsically disordered, domains that can play important roles for function and toxicity. To study these domains in detail using solid-state NMR spectroscopy, site-specific resonance assignments are required. Although the rapid dynamics of these domains lead to considerable averaging of orientation-dependent NMR interactions and thereby line-narrowing, the proton linewidths observed in these samples is far larger than what is regularly observed in solution...
October 20, 2016: Journal of Biomolecular NMR
Ching-Yu Chou, Minglee Chu, Chi-Fon Chang, Tsunai Yu, Tai-Huang Huang, Dimitris Sakellariou
Field-dependent NMR studies of bio-molecular systems using a sample shuttling hardware operating on a high-field NMR apparatus have provided valuable structural and dynamic information. We have recently published a design of a compact sample transportation device, called "field-cycler", which was installed in a commercial spectrometer and which provided highly precise positioning and stability during high speed shuttling. In this communication, we demonstrate the first use of a sample shuttling device on a commercial high field standard bore NMR spectrometer, equipped with a commercial triple resonance cryogenically cooled NMR probe...
October 15, 2016: Journal of Biomolecular NMR
Griselda Hernández, David M LeMaster
Both (15)N chemical shift anisotropy (CSA) and sufficiently rapid exchange linebroadening transitions exhibit relaxation contributions that are proportional to the square of the magnetic field. Deconvoluting these contributions is further complicated by residue-dependent variations in protein amide (15)N CSA values which have proven difficult to accurately measure. Exploiting recently reported improvements for the implementation of T1 and T1ρ experiments, field strength-dependent studies have been carried out on the B3 domain of protein G (GB3) as well as on the immunophilin FKBP12 and a H87V variant of that protein in which the major conformational exchange linebroadening transition is suppressed...
October 12, 2016: Journal of Biomolecular NMR
Mengli Cai, Ying Huang, Renbin Yang, Robert Craigie, G M Clore
We present a simple, convenient and robust protocol for expressing perdeuterated proteins in E. coli BL21(DE3) cells in shaker flasks that reduces D2O usage tenfold and d7-glucose usage by 30 %. Using a modified M9 medium and optimized growth conditions, we were able to grow cells in linear log phase to an OD600 of up to 10. Inducing the cells with isopropyl β-D-1-thiogalactopyranoside at an OD600 of 10, instead of less than 1, enabled us to increase the cell mass tenfold per unit volume of cell culture...
October 5, 2016: Journal of Biomolecular NMR
Wai Ching Veronica Wong, Aurimas Narkevicius, Wing Ying Chow, David G Reid, Rakesh Rajan, Roger A Brooks, Maggie Green, Melinda J Duer
We have prepared mouse fur extensively (13)C,(15)N-labelled in all amino acid types enabling application of 2D solid state NMR techniques which establish covalent and spatial proximities within, and in favorable cases between, residues. (13)C double quantum-single quantum correlation and proton driven spin diffusion techniques are particularly useful for resolving certain amino acid types. Unlike 1D experiments on isotopically normal material, the 2D methods allow the chemical shifts of entire spin systems of numerous residue types to be determined, particularly those with one or more distinctively shifted atoms such as Gly, Ser, Thr, Tyr, Phe, Val, Leu, Ile and Pro...
October 3, 2016: Journal of Biomolecular NMR
Amir Seginer, Gregory L Olsen, Lucio Frydman
Thanks to their special spatiotemporal encoding/decoding scheme, ultrafast (UF) NMR sequences can deliver arbitrary 2D spectra following a single excitation. Regardless of their nature, these sequences have in common their tracing of a path in the [Formula: see text]-[Formula: see text] plane, that will deliver the spectrum being sought after a 1D Fourier transformation versus [Formula: see text]. This need to simultaneously digitize two domains, tends to impose bandwidth limitations along all spectral axes...
September 28, 2016: Journal of Biomolecular NMR
Simon P Skinner, Rasmus H Fogh, Wayne Boucher, Timothy J Ragan, Luca G Mureddu, Geerten W Vuister
NMR spectroscopy is an indispensably powerful technique for the analysis of biomolecules under ambient conditions, both for structural- and functional studies. However, in practice the complexity of the technique has often frustrated its application by non-specialists. In this paper, we present CcpNmr version-3, the latest software release from the Collaborative Computational Project for NMR, for all aspects of NMR data analysis, including liquid- and solid-state NMR data. This software has been designed to be simple, functional and flexible, and aims to ensure that routine tasks can be performed in a straightforward manner...
September 23, 2016: Journal of Biomolecular NMR
Madeleine Strickland, Charles D Schwieters, Christoph Göbl, Ana C L Opina, Marie-Paule Strub, Rolf E Swenson, Olga Vasalatiy, Nico Tjandra
Lanthanide complexes based on the DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) cage are commonly used as phase contrast agents in magnetic resonance imaging, but can also be utilized in structural NMR applications due to their ability to induce either paramagnetic relaxation enhancement or a pseudocontact shift (PCS) depending on the choice of the lanthanide. The size and sign of the PCS for any given atom is determined by its coordinates relative to the metal center, and the characteristics of the lanthanide's magnetic susceptibility tensor...
September 22, 2016: Journal of Biomolecular NMR
M J Bostock, D J Holland, D Nietlispach
NMR spectroscopy is central to atomic resolution studies in biology and chemistry. Key to this approach are multidimensional experiments. Obtaining such experiments with sufficient resolution, however, is a slow process, in part since each time increment in every indirect dimension needs to be recorded twice, in quadrature. We introduce a modified compressed sensing (CS) algorithm enabling reconstruction of data acquired with random acquisition of quadrature components in gradient-selection NMR. We name this approach random quadrature detection (RQD)...
September 20, 2016: Journal of Biomolecular NMR
Yuya Hikone, Go Hirai, Masaki Mishima, Kohsuke Inomata, Teppei Ikeya, Souichiro Arai, Masahiro Shirakawa, Mikiko Sodeoka, Yutaka Ito
Structural analyses of proteins under macromolecular crowding inside human cultured cells by in-cell NMR spectroscopy are crucial not only for explicit understanding of their cellular functions but also for applications in medical and pharmaceutical sciences. In-cell NMR experiments using human cultured cells however suffer from low sensitivity, thus pseudocontact shifts from protein-tagged paramagnetic lanthanoid ions, analysed using sensitive heteronuclear two-dimensional correlation NMR spectra, offer huge potential advantage in obtaining structural information over conventional NOE-based approaches...
September 8, 2016: Journal of Biomolecular NMR
Lorna J Smith, Wilfred F van Gunsteren, Niels Hansen
Deriving molecular structure from [Formula: see text]-couplings obtained from NMR experiments is a challenge due to (1) the uncertainty in the Karplus relation [Formula: see text] connecting a [Formula: see text]-coupling value to a torsional angle [Formula: see text], (2) the need to account for the averaging inherent to the measurement of [Formula: see text]-couplings, and (3) the sampling road blocks that may emerge due to the multiple-valuedness of the inverse function [Formula: see text] of the function [Formula: see text]...
September 2016: Journal of Biomolecular NMR
Ching-Cheng Wang, Wen-Chung Lai, Woei-Jer Chuang
A tool for predicting the redox state and secondary structure of cysteine residues using multi-dimensional analyses of different combinations of nuclear magnetic resonance (NMR) chemical shifts has been developed. A data set of cysteine [Formula: see text], (13)C(α), (13)C(β), (1)H(α), (1)H(N), and (15)N(H) chemical shifts was created, classified according to redox state and secondary structure, using a library of 540 re-referenced BioMagResBank (BMRB) entries. Multi-dimensional analyses of three, four, five, and six chemical shifts were used to derive rules for predicting the structural states of cysteine residues...
September 2016: Journal of Biomolecular NMR
Nikita Malik, Ashutosh Kumar
NMR resonance assignment of intrinsically disordered proteins poses a challenge because of the limited dispersion of amide proton chemical shifts. This becomes even more complex with the increase in the size of the system. Residue specific selective labeling/unlabeling experiments have been used to resolve the overlap, but require multiple sample preparations. Here, we demonstrate an assignment strategy requiring only a single sample of uniformly labeled (13)C,(15)N-protein. We have used a combinatorial approach, involving 3D-HNN, CC(CO)NH and 2D-MUSIC, which allowed us to assign a denatured centromeric protein Cse4 of 229 residues...
September 2016: Journal of Biomolecular NMR
Mitsuhiro Takeda, Yohei Miyanoiri, Tsutomu Terauchi, Masatsune Kainosho
Conformational isomerization of disulfide bonds is associated with the dynamics and thus the functional aspects of proteins. However, our understanding of the isomerization is limited by experimental difficulties in probing it. We explored the disulfide conformational isomerization of the Cys14-Cys38 disulfide bond in bovine pancreatic trypsin inhibitor (BPTI), by performing an NMR line-shape analysis of its Cys carbon peaks. In this approach, 1D (13)C spectra were recorded at small temperature intervals for BPTI samples selectively labeled with site-specifically (13)C-enriched Cys, and the recorded peaks were displayed in the order of the temperature after the spectral scales were normalized to a carbon peak...
September 2016: Journal of Biomolecular NMR
Alberto Ceccon, G Marius Clore, Vitali Tugarinov
In an exchanging system between major and minor species, the transverse paramagnetic relaxation enhancement rate observed on the resonances of the major species (Γ 2 (app) ) is dependent upon the exchange regime between the species. Quantitative analysis of PRE data in such systems typically assumes that the overall exchange rate k ex between the species is fast on the PRE time scale (k ex ≫ Γ2). Recently, we have characterized the kinetics of binding of the model protein ubiquitin to large (LUV) and small (SUV) unilamellar lipid-based nanoparticles or liposomes (Ceccon A, Tugarinov V, Bax A, Clore GM (2016)...
September 2016: Journal of Biomolecular NMR
Paul Coote, Wolfgang Bermel, Gerhard Wagner, Haribabu Arthanari
Active bandwidth and global quality factor are the two main metrics used to quantitatively compare the performance of TOCSY mixing sequences. Active bandwidth refers to the spectral region over which at least 50 % of the magnetization is transferred via a coupling. Global quality factor scores mixing sequences according to the worst-case transfer over a range of possible mixing times and chemical shifts. Both metrics reward high transfer efficiency away from the main diagonal of a two-dimensional spectrum...
September 2016: Journal of Biomolecular NMR
Matthias Trautwein, Kai Fredriksson, Heiko M Möller, Thomas E Exner
Apart from their central role during 3D structure determination of proteins the backbone chemical shift assignment is the basis for a number of applications, like chemical shift perturbation mapping and studies on the dynamics of proteins. This assignment is not a trivial task even if a 3D protein structure is known and needs almost as much effort as the assignment for structure prediction if performed manually. We present here a new algorithm based solely on 4D [(1)H,(15)N]-HSQC-NOESY-[(1)H,(15)N]-HSQC spectra which is able to assign a large percentage of chemical shifts (73-82 %) unambiguously, demonstrated with proteins up to a size of 250 residues...
August 2016: Journal of Biomolecular NMR
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"