Read by QxMD icon Read

Mechanisms of Development

Juan Manuel Murillo-Maldonado, Juan Rafael Riesgo-Escovar
We review the use of a model organism to study the effects of a slow course, degenerative disease: namely, diabetes mellitus. Development and aging are biological phenomena entailing reproduction, growth, and differentiation, and then decline and progressive loss of functionality leading ultimately to failure and death. It occurs at all biological levels of organization, from molecular interactions to organismal well being and homeostasis. Yet very few models capable of addressing the different levels of complexity in these chronic, developmental phenomena are available to study, and model organisms are an exception and a welcome opportunity for these approaches...
October 1, 2016: Mechanisms of Development
Rudolf Winklbauer, Serge E Parent
Adhesion differences are the main driver of cell sorting and related processes such as boundary formation or tissue positioning. In the early amphibian embryo, graded variations in cadherin density and localized expression of adhesion-modulating factors are associated with regional differences in adhesive properties including overall adhesion strength. The role of these differences in embryonic boundary formation has not been studied extensively, but available evidence suggests that adhesion strength differentials are not essential...
September 30, 2016: Mechanisms of Development
Isao Matsuo, Ryuji Hiramatsu
In most mammals, embryonic development and growth proceed in the maternal uterus. Mouse late blastocyst embryos implant on the uterine epithelium around embryonic day (E)4.5, and immediately afterward the whole embryo's shape is dynamically changed from a bowl-like shape to an elongated egg-cylinder until E5.5. Concurrently, mouse anterior-posterior (A-P) axis polarization occurs by the emergence of distal visceral endoderm (DVE) cells at the cellular and molecular levels as the proximal-distal (P-D) axis. The embryonic growth and axis polarization are considered to be controlled primarily by multiple growth factors' signaling...
September 30, 2016: Mechanisms of Development
Alice H Reis, Marcela M Moreno, Lorena A Maia, Fernanda P Oliveira, Andressa S Santos, José Garcia Abreu
Wnt/β-catenin has been described as crucial for dorsal-ventral and antero-posterior patterning, playing multiple roles at different stages of development. Cholesterol-rich membrane microdomains (CRMMs), cholesterol- and sphingolipid-enriched domains of the plasma membrane, are known as platforms for signaling pathways. Although we have demonstrated the importance of the CRMMs for head development, how they participate in prechordal plate formation and embryo axis patterning remains an open question. Moreover, the participation of the CRMMs in the Wnt/β-catenin signaling pathway activity in vivo is unclear, particularly during embryonic development...
September 26, 2016: Mechanisms of Development
Vengamanaidu Modepalli, Lyn A Hinds, Julie A Sharp, Christophe Lefevre, Kevin R Nicholas
Our research is exploiting the marsupial as a model to understand the signals required for lung development. Marsupials have a unique reproductive strategy, the mother gives birth to altricial neonate with an immature lung and the changes in milk composition during lactation in marsupials appears to provide bioactives that can regulate diverse aspects of lung development, including branching morphogenesis, cell proliferation and cell differentiation. These effects are seen with milk collected between 25 and 100days postpartum...
September 14, 2016: Mechanisms of Development
Authors Nathalie Oulhen, Andreas Heyland, Tyler J Carrier, Vanesa Zazueta-Novoa, Tara Fresques, Jessica Laird, Thomas M Onorato, Daniel Janies, Gary Wessel
BACKGROUND: Some metazoa have the capacity to regenerate lost body parts. This phenomenon in adults has been classically described in echinoderms, especially in sea stars (Asteroidea). Sea star bipinnaria larvae can also rapidly and effectively regenerate a complete larva after surgical bisection. Understanding the capacity to reverse cell fates in the larva is important from both a developmental and biomedical perspective; yet, the mechanisms underlying regeneration in echinoderms are poorly understood...
August 20, 2016: Mechanisms of Development
Hao Lin, Zheying Min, Qinghua Tao
Wdr5 is an essential component of SET/MLL methylase complexes that catalyze histone H3 lysine 4 trimethylation. The maternal Wnt/β-catenin signaling is necessary for the H3K4me3 deposition at organizer genes in early Xenopus embryos. However, it remains unknown whether any component of SET/MLL methylase complex is required for Wnt signaling to establish H3K4me3 at its targets during the organizer induction. Here, we provide evidence that Wdr5 is required for dorsal axis development and organizer gene activation in Xenopus...
August 9, 2016: Mechanisms of Development
Jaydeep Sidhaye, Clyde Savio Pinto, Shweta Dharap, Tressa Jacob, Shobha Bhargava, Mahendra Sonawane
Microvillus inclusion disease (MVID) is a life threatening enteropathy characterised by malabsorption and incapacitating fluid loss due to chronic diarrhoea. Histological analysis has revealed that enterocytes in MVID patients exhibit reduction of microvilli, presence of microvillus inclusion bodies and intestinal villus atrophy, whereas genetic linkage analysis has identified mutations in myosin Vb gene as the main cause of MVID.In order to understand the cellular basis of MVID and the associated formation of inclusion bodies, an animal model that develops ex-utero and is tractable genetically as well as by microscopy would be highly useful...
August 3, 2016: Mechanisms of Development
Malgorzata Kloc, Jacek Z Kubiak, Szczepan M Bilinski
The female germline cells, i.e., the oocytes/eggs, contain a subpopulation of unique organelles and molecules (RNA and proteins) collectively called "the maternal determinants" that are indispensable for the determination of cell fate in the developing embryo. Although it has been known for some time that somatic cells deliver low-molecular-weight molecules to the oocyte/egg, the paradigm has been that the larger molecules and organelles are synthesized by the female germline cells without input from the surrounding somatic cells...
August 2016: Mechanisms of Development
Tianyi Zhang, Zhentao Sheng, Wei Du
Inactivation of HDAC1 and its homolog HDAC2 or addition of HDAC inhibitors in mammalian systems induces apoptosis, cell cycle arrest, and developmental defects. Although these phenotypes have been extensively characterized, the precise underlying mechanisms remain unclear, particularly in in vivo settings. In this study, we show that inactivation of Rpd3, the only HDAC1 and HDAC2 ortholog in Drosophila, induced apoptosis and clone elimination in the developing eye and wing imaginal discs. Depletion of Rpd3 by RNAi cell-autonomously increased JNK activities and decreased activities of Yki, the nuclear effecter of Hippo signaling pathway...
August 2016: Mechanisms of Development
Sonja Bissegger, Valerie S Langlois
No abstract text is available yet for this article.
August 2016: Mechanisms of Development
Boon Siang Nicholas Tan, Peter D Rathjen, Alexandra J Harvey, David K Gardner, Joy Rathjen
The developmental outcomes of preimplantation mammalian embryos are regulated directly by the surrounding microenvironment, and inappropriate concentrations of amino acids, or the loss of amino acid-sensing mechanisms, can be detrimental and impact further development. A specific role for l-proline in the differentiation of embryonic stem (ES) cells, a cell population derived from the blastocyst, has been shown in culture. l-proline acts as a signalling molecule, exerting its effects through cell uptake and subsequent metabolism...
August 2016: Mechanisms of Development
Seiko Sugimori, Aya Hasegawa, Hideki Nakagoshi
Veins are longitudinal cuticular structures that maintain shape of the wing. Drosophila melanogaster has six longitudinal veins (L1-L6) and two cross veins. The Zn-finger transcription factors of Spalt-complex (Sal) are required for positioning of the L2 and L5, and the homeodomain transcription factors of Iroquois complex (Iro-C) are required for formation of the L3 and L5 veins. The homeodomain transcriptional repressor Defective proventriculus (Dve) is uniformly expressed in the wing pouch of the larval imaginal disc...
August 2016: Mechanisms of Development
Monika Humięcka, Magdalena Krupa, Maria M Guzewska, Marek Maleszewski, Aneta Suwińska
During mouse embryogenesis initial specification of the cell fates depends on the type of division during 8- to 16- and 16- to 32-cell stage transition. A conservative division of a blastomere creates two polar outer daughter cells, which are precursors of the trophectoderm (TE), whereas a differentiative division gives rise to a polar outer cell and an apolar inner (the presumptive inner cell mass - ICM) cell. We hypothesize that the type of division may depend on the interactions between blastomeres of the embryo...
August 2016: Mechanisms of Development
Kade P Pettie, Jacqueline M Dresch, Robert A Drewell
In the development of the Drosophila embryo, gene expression is directed by the sequence-specific interactions of a large network of protein transcription factors (TFs) and DNA cis-regulatory binding sites. Once the identity of the typically 8-10bp binding sites for any given TF has been determined by one of several experimental procedures, the sequences can be represented in a position weight matrix (PWM) and used to predict the location of additional TF binding sites elsewhere in the genome. Often, alignments of large (>200bp) genomic fragments that have been experimentally determined to bind the TF of interest in Chromatin Immunoprecipitation (ChIP) studies are trimmed under the assumption that the majority of the binding sites are located near the center of all the aligned fragments...
August 2016: Mechanisms of Development
Christine L Hammer, A D S Atukorala, Tamara A Franz-Odendaal
BACKGROUND: Teeth are integrated into the vertebrate oral jaws to provide a functional unit for feeding, however little is known about how this integration occurs during growth and development. The purpose of this study is to identify the ontogenetic changes in oral jaw shape that are associated with the transition of the oral dentition from unicuspid teeth to multicuspid teeth. Here, we compare the shape of the occluding upper (premaxilla) and lower (mandible) jaws of the toothed Mexican tetra (Astyanax mexicanus) and the toothless (oral teeth present, pharyngeal teeth absent) zebrafish (Danio rerio) over development...
August 2016: Mechanisms of Development
Congxing Lin, Ralf Werner, Liang Ma, Jeffrey H Miner
Hypospadias, a congenital malformation of the penis characteristic of an abnormal urethral orifice, affects 1 in every 125 boys, and its incidence is rising. Herein we test the hypothesis that the basement membrane protein laminin α5 (LAMA5) plays a key role in the development of the mouse genital tubercle, the embryonic anlage of the external genitalia. Using standard histological analyses and electron microscopy, we characterized the morphology of the external genitalia in Lama5 knockout (LAMA5-KO) mouse embryos during both androgen-independent genital tubercle development and androgen-mediated sexual differentiation...
August 2016: Mechanisms of Development
Domenico Ribatti
During avian development the mesodermal layers of the allantois and chorion fuse to form the chorioallantoic membrane (CAM). This structure rapidly expands generating a rich vascular network that provides an interface for gas and waste exchange. The CAM allows to study tissue grafts, tumor growth and metastasis, wound healing, drugs delivery and toxicologic analysis, and angiogenic and anti-angiogenic molecules. The CAM is relatively simple, quick, and low-cost model that allows screening of a large number of pharmacological samples in a short time; does not require administrative procedures for obtaining ethics committee approval for animal experimentation...
August 2016: Mechanisms of Development
Dongbo Shi, Fumiko Usami, Kouji Komatsu, Sanae Oka, Takaya Abe, Tadashi Uemura, Toshihiko Fujimori
The planar cell polarity (PCP) pathway regulates morphogenesis in various organs. The polarized localization is a key feature of core PCP factors for orchestrating cell polarity in an epithelial sheet. Several studies using Drosophila melanogaster have investigated the mechanism of the polarized localization. However, to what extent these mechanisms are conserved and how the polarization of core PCP factors is maintained in mature vertebrates are still open questions. Here, we addressed these questions by analyzing the dynamics of Vangl2, a member of core PCP factors, in the mouse oviduct epithelium...
August 2016: Mechanisms of Development
Eriko Sakakura, Mototsugu Eiraku, Nozomu Takata
The eyes are subdivided from the rostral diencephalon in early development. How the neuroectoderm regulates this subdivision, however, is largely unknown. Taking advantage of embryonic stem cell (ESC) culture using a Rax reporter line to monitor rostral diencephalon formation, we found that ESC-derived tissues at day 7 grown in Glasgow Minimum Expression Media (GMEM) containing knockout serum replacement (KSR) exhibited higher levels of expression of axin2, a Wnt target gene, than those grown in chemically defined medium (CDM)...
August 2016: Mechanisms of Development
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"