Read by QxMD icon Read


Min-Hui Tang, Nan Gao, Jiao Zhou, Yan Zhao, Jing-Sheng Cheng, Wen-Kun Su, Ying-Jin Yuan
Sulfamethoxazole (SMX) has frequently been detected in aquatic environments. In natural environment, not only individual microorganism but also microbial consortia are involved in some biotransformation of pollutants. The competition for space under consortia causing cell-cell contact inhibition changes the cellular behaviors. Herein, the membrane bioreactor system (MBRS) was applied to improve SMX elimination thorough exchanging the cell-free broths (CFB). The removal efficiency of SMX was increased by more than 24% whether under the pure culture of A...
March 15, 2018: Biodegradation
Hao Hu, Jin-Feng Liu, Cai-Yun Li, Shi-Zhong Yang, Ji-Dong Gu, Bo-Zhong Mu
The increasing usage of partially hydrolyzed polyacrylamide (HPAM) in oilfields as a flooding agent to enhance oil recovery at so large quantities is an ecological hazard to the subsurface ecosystem due to persistence and inertness. Biodegradation of HPAM is a potentially promising strategy for dealing with this problem among many other methods available. To understand the responsible microorganisms and mechanism of HPAM biodegradation under anaerobic conditions, an enrichment culture from production waters of oil reservoirs were established with HPAM as the sole source of carbon and nitrogen incubated for over 328 days, and analyzed using both molecular microbiology and chemical characterization methods...
March 3, 2018: Biodegradation
Michael Grösbacher, Dominik Eckert, Olaf A Cirpka, Christian Griebler
Aromatic hydrocarbons belong to the most abundant contaminants in groundwater systems. They can serve as carbon and energy source for a multitude of indigenous microorganisms. Predictions of contaminant biodegradation and microbial growth in contaminated aquifers are often vague because the parameters of microbial activity in the mathematical models used for predictions are typically derived from batch experiments, which don't represent conditions in the field. In order to improve our understanding of key drivers of natural attenuation and the accuracy of predictive models, we conducted comparative experiments in batch and sediment flow-through systems with varying concentrations of contaminant in the inflow and flow velocities applying the aerobic Pseudomonas putida strain F1 and the denitrifying Aromatoleum aromaticum strain EbN1...
February 28, 2018: Biodegradation
Rahma Omrani, Giulia Spini, Edoardo Puglisi, Dalila Saidane
Environmental microbial communities are key players in the bioremediation of hydrocarbon pollutants. Here we assessed changes in bacterial abundance and diversity during the degradation of Tunisian Zarzatine oil by four indigenous bacterial consortia enriched from a petroleum station soil, a refinery reservoir soil, a harbor sediment and seawater. The four consortia were found to efficiently degrade up to 92.0% of total petroleum hydrocarbons after 2 months of incubation. Illumina 16S rRNA gene sequencing revealed that the consortia enriched from soil and sediments were dominated by species belonging to Pseudomonas and Acinetobacter genera, while in the seawater-derived consortia Dietzia, Fusobacterium and Mycoplana emerged as dominant genera...
February 28, 2018: Biodegradation
Ke Zhang, Yihao Liu, Qiang Chen, Hongbing Luo, Zhanyuan Zhu, Wei Chen, Jia Chen, You Mo
Two bacterial strains designated as Arthrobacter sp. SLG-4 and Rhodococcus sp. SLG-6, capable of utilizing di-n-octyl phthalate (DOP) as sole source of carbon and energy, were isolated from activated sludge. The analysis of DOP degradation intermediates indicated Arthrobacter sp. SLG-4 could completely degrade DOP. Whereas DOP could not be mineralized by Rhodococcus sp. SLG-6 and the final metabolic product was phthalic acid (PA). The proposed DOP degradation pathway by Arthrobacter sp. SLG-4 was that strain SLG-4 initially transformed DOP to PA via de-esterification pathway, and then PA was metabolized to protocatechuate acid and eventually converted to tricarboxylic acid (TCA) cycle through meta-cleavage pathway...
February 15, 2018: Biodegradation
Synnøve Lofthus, Roman Netzer, Anna S Lewin, Tonje M B Heggeset, Tone Haugen, Odd Gunnar Brakstad
Oil biodegradation studies have mainly focused on microbial processes in dispersions, not specifically on the interfaces between the oil and the seawater in the dispersions. In this study, a hydrophobic adsorbent system, consisting of Fluortex fabrics, was used to investigate biodegradation of n-alkanes and microbial communities on oil-seawater interfaces in natural non-amended seawater. The study was performed over a temperature range from 0 to 20 °C, to determine how temperature affected biodegradation at the oil-seawater interfaces...
February 3, 2018: Biodegradation
Tengxia He, Zhenlun Li, Deti Xie, Quan Sun, Yi Xu, Qing Ye, Jiupai Ni
Microorganism with simultaneous nitrification and denitrification ability plays a significant role in nitrogen removal process, especially in the eutrophic waters with excessive nitrogen loads. The nitrogen removal capacity of microorganism may suffer from low temperature or nitrite nitrogen source. In this study, a hypothermia aerobic nitrite-denitrifying bacterium, Pseudomonas tolaasii strain Y-11, was selected to determine the simultaneous nitrification and denitrification ability with mixed nitrogen source at 15 °C...
January 30, 2018: Biodegradation
Fei Mao, Xiaohong Liu, Kang Wu, Chen Zhou, Youbin Si
Because of extensive sulfonamides application in aquaculture and animal husbandry and the consequent increase in sulfonamides discharged into the environment, strategies to remediate sulfonamide-contaminated environments are essential. In this study, the resistance of Shewanella oneidensis MR-1 and Shewanella sp. strain MR-4 to the sulfonamides sulfapyridine (SPY) and sulfamethoxazole (SMX) were determined, and sulfonamides degradation by these strains was assessed. Shewanella oneidensis MR-1 and Shewanella sp...
January 4, 2018: Biodegradation
Ramdas G Kanissery, Allana Welsh, Andres Gomez, Lynn Connor, Gerald K Sims
The influence of soil environmental factors such as aeration on the ecology of microorganisms involved in the mineralization and degradation of the popular soil-applied pre-emergent herbicide, metolachlor is unknown. To address this knowledge gap, we utilized DNA-based stable isotope probing (SIP) where soil microcosms were incubated aerobically or anaerobically and received herbicide treatments with unlabeled metolachlor or 13C-metolachlor. Mineralization of metolachlor was confirmed as noted from the evolution of 14CO2 from 14C-metolachlor-treated microcosms and clearly demonstrated the efficient utilization of the herbicide as a carbon source...
December 28, 2017: Biodegradation
Zheng-Hui Lv, Jing Wang, Guang-Feng Yang, Li-Juan Feng, Jun Mu, Liang Zhu, Xiang-Yang Xu
In order to evaluate the enhancement mechanisms of enhanced startup performance in biofilm systems for polluted source water pretreatment, three lab-scale reactors with elastic stereo media (ESM) were operated under different enhanced sediment and hydraulic agitation conditions. It is interesting to found the previously underestimated or overlooked effects of sediment on the enhancement of pollutants removal performance and enrichment of functional bacteria in biofilm systems. The maximum NH4 + -N removal rate of 0...
February 2018: Biodegradation
Sviatlana Marozava, Housna Mouttaki, Hubert Müller, Nidal Abu Laban, Alexander J Probst, Rainer U Meckenstock
An anaerobic culture (1MN) was enriched with 1-methylnaphthalene as sole source of carbon and electrons and Fe(OH)3 as electron acceptor. 1-Naphthoic acid was produced as a metabolite during growth with 1-methylnaphthalene while 2-naphthoic acid was detected with naphthalene and 2-methylnaphthalene. This indicates that the degradation pathway of 1-methylnaphthalene might differ from naphthalene and 2-methylnaphthalene degradation in sulfate reducers. Terminal restriction fragment length polymorphism and pyrosequencing revealed that the culture is mainly composed of two bacteria related to uncultured Gram-positive Thermoanaerobacteraceae and uncultured gram-negative Desulfobulbaceae...
February 2018: Biodegradation
Huijun Jia, Qiuyan Yuan
In this study, the effects of ammonium nitrogen concentration, algae biomass concentration, and light conditions (wavelength and intensity) on the ammonium removal efficiency of algae-bacteria consortia from wastewater were investigated. The results indicated that ammonium concentration and light intensity had a significant impact on nitrification. It was found that the highest ammonia concentration (430 mg N/L) in the influent resulted in the highest ammonia removal rate of 108 ± 3.6 mg N/L/days, which was two times higher than the influent with low ammonia concentration (40 mg N/L)...
December 13, 2017: Biodegradation
He Hao, Yonglan Tian, Huayong Zhang, Yang Chai
The effect of copper (added as CuCl2) on the anaerobic co-digestion of Phragmites straw and cow dung was studied in pilot experiments by investigating the biogas properties, process stability, substrate degradation and enzyme activities at different stages of mesophilic fermentation. The results showed that 30 and 100 mg/L Cu2+ addition increased the cumulative biogas yields by up to 43.62 and 20.77% respectively, and brought forward the daily biogas yield peak, while 500 mg/L Cu2+ addition inhibited biogas production...
December 2017: Biodegradation
Jennifer Weidhaas, Alexander Panaccione, Ananda Shankar Bhattacharjee, Ramesh Goel, Angela Anderson, Saraswati Poudel Acharya
Two sequencing batch reactors (SBRs) were run to bio-mineralize 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO) in lab scale settings. The reactors were shown to reproducibly biotransform these munitions under aerobic and anaerobic conditions during the operations of these SBRs. Complete removal (100% biotransformation) of DNAN (initially 17.7 ± 5.4 mg L-1) and NTO (initially 15.0 ± 7.1 mg L-1) was observed in an anaerobic SBR when Luria-Bertani (LB) broth was present. In contrast, an aerobic SBR degraded only 58 ± 22% of DNAN (initially 19...
November 16, 2017: Biodegradation
Javiera M Anguita, Claudia Rojas, Pablo A Pastén, Ignacio T Vargas
Biological arsenic oxidation has been suggested as a key biogeochemical process that controls the mobilization and fate of this metalloid in aqueous environments. To the best of our knowledge, only four aerobic chemolithoautotrophic arsenite-oxidizing (CAO) bacteria have been shown to grow via direct arsenic oxidation and to have the essential genes for chemolithoautotrophic arsenite oxidation. In this study, a new CAO bacterium was isolated from a high Andean watershed evidencing natural dissolved arsenic attenuation...
November 16, 2017: Biodegradation
Norma C S Amorim, Eduardo L C Amorim, Mario T Kato, Lourdinha Florencio, Savia Gavazza
Manipueira is a carbohydrate-rich agro-industrial waste from cassava processing. It is considered well suitable for biotechnological processes, such as hydrogen and carboxylic acids production, due to the high content of easily degradable organic matter. However, the proper methanogenesis inhibition method, inoculum type, and organic loads are factors still limiting the processes. The objective in this work was to evaluate the effects of such factors on byproducts production in anaerobic reactors. Batch experiments were conducted with 2...
November 11, 2017: Biodegradation
Chuanyi Zhang, Xinhai Xu, Kuixia Zhao, Lianggang Tang, Siqi Zou, Limei Yuan
For municipal wastewater treatment, main stream biological nutrient removal (BNR) process is becoming more and more important. This lab-scale study, novel MBR_based BNR processes (named A2N-MBR and A2NO-MBR) were built. Comparison of the COD removal, results obtained demonstrated that COD removal efficiencies were almost the same in three processes, with effluent concentration all bellowed 30 mg L(-1). However, the two-sludge systems (A2N-MBR and A2NO-MBR) had an obvious advantage over the A(2)/O for denitrification and phosphorus removal, with the average TP removal rates of 91...
October 28, 2017: Biodegradation
Hui Wang, Jinxing Hu, Kai Xu, Xianjin Tang, Xinhua Xu, Chaofeng Shen
Two biphenyl-degrading bacterial strains, SS1 and SS2, were isolated from polychlorinated biphenyl (PCB)-contaminated soil. They were identified as Rhodococcus ruber and Rhodococcus pyridinivorans based on the 16S rRNA gene sequence, as well as morphological, physiological and biochemical characteristics. SS1 and SS2 exhibited tolerance to 2000 and 3000 mg/L of biphenyl. And they could degrade 83.2 and 71.5% of 1300 mg/L biphenyl within 84 h, respectively. In the case of low-chlorinated PCB congeners, benzoate and 3-chlorobenzoate, the degradation activities of SS1 and SS2 were also significant...
October 19, 2017: Biodegradation
Paul B Hatzinger, Rahul Banerjee, Rachael Rezes, Sheryl H Streger, Kevin McClay, Charles E Schaefer
The objective of this research was to evaluate the potential for two gases, methane and ethane, to stimulate the biological degradation of 1,4-dioxane (1,4-D) in groundwater aquifers via aerobic cometabolism. Experiments with aquifer microcosms, enrichment cultures from aquifers, mesophilic pure cultures, and purified enzyme (soluble methane monooxygenase; sMMO) were conducted. During an aquifer microcosm study, ethane was observed to stimulate the aerobic biodegradation of 1,4-D. An ethane-oxidizing enrichment culture from these samples, and a pure culture capable of growing on ethane (Mycobacterium sphagni ENV482) that was isolated from a different aquifer also biodegraded 1,4-D...
October 11, 2017: Biodegradation
Jibing Li, Dayi Zhang, Mengke Song, Longfei Jiang, Yujie Wang, Chunling Luo, Gan Zhang
The indigenous microorganisms responsible for degrading phenanthrene (PHE) in activated biosludge were identified using DNA-based stable isotope probing. Besides the well-known PHE degraders Burkholderia, Ralstonia, Sinobacteraceae and Arthrobacter, we for the first time linked the taxa Paraburkholderia and Kaistobacter with in situ PHE biodegradation. Analysis of PAH-RHDα gene detected in the heavy DNA fraction of (13)C-PHE treatment suggested the mechanisms of horizontal gene transfer or inter-species hybridisation in PAH-RHD gene spread within the microbial community...
September 27, 2017: Biodegradation
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"