Read by QxMD icon Read

Current Opinion in Biotechnology

Hans De Steur, Matty Demont, Xavier Gellynck, Alexander J Stein
Genetic modification (GM) has been advocated as an alternative or complement to micronutrient interventions such as supplementation, fortification or dietary diversification. While proof-of-concept of various GM biofortified crops looks promising, the decision tree of policy makers is much more complex, and requires insight on their socio-economic impacts: Will it actually work? Is it financially sound? Will people accept it? Can it be implemented in a globalized world? This review shows that GM biofortification could effectively reduce the burden of micronutrient deficiencies, in an economically viable way, and is generally well received by target beneficiaries, despite some resistance and uncertainty...
February 20, 2017: Current Opinion in Biotechnology
Richard C Macknight, William A Laing, Sean M Bulley, Ronan C Broad, Alexander At Johnson, Roger P Hellens
Ascorbate (or vitamin C) is an essential human micronutrient predominantly obtained from plants. In addition to preventing scurvy, it is now known to have broader roles in human health, for example as a cofactor for enzymes involved in epigenetic programming and as regulator of cellular iron uptake. Furthermore, ascorbate is the major antioxidant in plants and underpins many environmentally induced abiotic stress responses. Biotechnological approaches to enhance the ascorbate content of crops therefore have potential to improve both human health and abiotic stress tolerance of crops...
February 20, 2017: Current Opinion in Biotechnology
David K Karig
The fields of biosensing and bioremediation leverage the phenomenal array of sensing and metabolic capabilities offered by natural microbes. Synthetic biology provides tools for transforming these fields through complex integration of natural and novel biological components to achieve sophisticated sensing, regulation, and metabolic function. However, the majority of synthetic biology efforts are conducted in living cells, and concerns over releasing genetically modified organisms constitute a key barrier to environmental applications...
February 19, 2017: Current Opinion in Biotechnology
Patrick J Stover, Jane Durga, Martha S Field
Mammals require essential nutrients from dietary sources to support normal metabolic, physiological and neuronal functions, to prevent diseases of nutritional deficiency as well as to prevent chronic disease. Disease and/or its treatment can modify fundamental biological processes including cellular nutrient accretion, stability and function in cells. These effects can be isolated to a specific diseased organ in the absence of whole-body alterations in nutrient status or biochemistry. Loss of blood-brain barrier function, which occurs in in-born errors of metabolism and in chronic disease, can cause brain-specific folate deficiency and contribute to disease co-morbidity...
February 9, 2017: Current Opinion in Biotechnology
Jingyan Zhang, Amy D Holdorf, Albertha Jm Walhout
Resident microbes of the human body, particularly the gut microbiota, provide essential functions for the host, and, therefore, have important roles in human health as well as mitigating disease. It is difficult to study the mechanisms by which the microbiota affect human health, especially at a systems-level, due to heterogeneity of human genomes, the complexity and heterogeneity of the gut microbiota, the challenge of growing these bacteria in the laboratory, and the lack of bacterial genetics in most microbiotal species...
February 8, 2017: Current Opinion in Biotechnology
David A Scheinberg, Jan Grimm, Daniel A Heller, Evan P Stater, Michelle Bradbury, Michael R McDevitt
The use of novel materials in the nano-scale size range for applications in devices, drugs and diagnostic agents comes with a number of new opportunities, and also serious challenges to human applications. The larger size of particulate-based agents, as compared to traditional drugs, allows for the significant advantages of multivalency and multi-functionality. However, the human use of nanomaterials requires a thorough understanding of the biocompatibility of the synthetic molecules and their complex pharmacology...
February 7, 2017: Current Opinion in Biotechnology
Zhaolong Hu, James C S Ho, Madhavan Nallani
A plethora of polymer-based scaffolds have been designed to facilitate biochemical and biophysical investigation of membrane proteins, with a common goal to stabilize and present them in a functional format. In this review, an up-to-date account of such polymer-based supports and incorporation methodologies are presented. Furthermore, conceptual and imminent technological advances, with associated technical challenges are proposed.
February 7, 2017: Current Opinion in Biotechnology
Naoya Kobayashi, Ryoichi Arai
The central goal of nanobiotechnology is to design and construct novel biomaterials of nanometer sizes. In this short review, we describe recent progress of several approaches for designing and creating artificial self-assembling protein complexes and primarily focus on the following biotechnological strategies for using artificial and fusion proteins as nanoscale building blocks: fusion proteins designed for symmetrical self-assembly; three-dimensional domain-swapped oligomers; self-assembling designed coiled-coil peptide modules; metal-directed self-assembling engineered proteins; computationally designed self-assembling de novo proteins; and self-assembling protein nanobuilding blocks (PN-Blocks) using an intermolecularly folded dimeric de novo protein...
February 1, 2017: Current Opinion in Biotechnology
Lu Tan, Kristin Schirmer
The significant increase of contaminants entering fresh water bodies calls for the development of rapid and reliable methods to monitor the aquatic environment and to detect water toxicity. Cell culture-based biosensing techniques utilise the overall cytotoxic response to external stimuli, mediated by a transduced signal, to specify the toxicity of aqueous samples. These biosensing techniques can effectively indicate water toxicity for human safety and aquatic organism health. In this review we account for the recent developments of the mainstream cell culture-based biosensing techniques for water quality evaluation, discuss their key features, potentials and limitations, and outline the future prospects of their development...
January 27, 2017: Current Opinion in Biotechnology
Julia L Finkelstein, Jere D Haas, Saurabh Mehta
Iron deficiency is the most common micronutrient deficiency globally and represents a major threat to public health. Biofortification, the process of enhancing micronutrient content and bioavailability in staple crops, represents an exciting sustainable food-based strategy to combat and prevent iron deficiency, particularly in resource-limited settings. In this review, we examine the evidence to date of the efficacy of iron-biofortified staple food crops on improving iron status in at-risk populations, including rice, pearl millet, and beans...
January 25, 2017: Current Opinion in Biotechnology
Victoria Wosika, Serge Pelet
All cells are different. Even isogenic cells can possess diverse shapes, reside in different cell-cycle stages or express various sets of proteins. These variations can modulate the cell response to environmental stimuli and thereby provide key insights into the regulation of signal transduction cascades. Fluorescence microscopy allows to visualize these differences and monitor in real-time the responses of live single cells. In order to observe key cellular events, fluorescent biosensors have been developed...
January 25, 2017: Current Opinion in Biotechnology
Tobias W Giessen, Pamela A Silver
Based on projections for global population growth, current techniques for improving agricultural yields will not be able to address future demands for major food crops. Improving photosynthetic efficiency by engineering carbon fixation has been identified as one of the most important approaches for increasing agricultural output. Recent studies indicate that introducing cyanobacterial-like carbon concentrating mechanisms (CCMs) into plant chloroplasts represents a promising strategy for enhancing plant photosynthesis...
January 23, 2017: Current Opinion in Biotechnology
Kevin Strauss, Jean Chmielewski
Regenerative medicine makes use of cell-supporting biomaterials to replace lost or damaged tissue. Collagen holds great potential in this regard caused by its biocompatibility and structural versatility. While natural collagen has shown promise for regenerative medicine, collagen mimetic peptides (CMPs) have emerged that allow far higher degrees of customization and ease of preparation. A wide range of two and three-dimensional assemblies have been generated from CMPs, many of which accommodate cellular adhesion and encapsulation, through careful sequence design and the exploitation of electrostatic and hydrophobic forces...
January 23, 2017: Current Opinion in Biotechnology
Jonathan S McQuillan, Julie C Robidart
Aquatic microbial communities are central to biogeochemical processes that maintain Earth's habitability. However, there is a significant paucity of data collected from these species in their natural environment. To address this, a suite of ocean-deployable sampling and sensing instrumentation has been developed to retrieve, archive and analyse water samples and their microbial fraction using state of the art genetic assays. Recent deployments have shed new light onto the role microbes play in essential ocean processes and highlight the risks they may pose to coastal populations...
January 23, 2017: Current Opinion in Biotechnology
Jurre J Kamphorst, Ian A Lewis
No abstract text is available yet for this article.
January 23, 2017: Current Opinion in Biotechnology
Flavio Della Sala, Simona Neri, Subhabrata Maiti, Jack L-Y Chen, Leonard J Prins
Over the past decades, chemists have mastered the art of assembling small molecules into complex nanostructures using non-covalent interactions. The driving force for self-assembly is thermodynamics: the self-assembled structure is more stable than the separate components. However, biological self-assembly processes are often energetically uphill and require the consumption of chemical energy. This allows nature to control the activation and duration of chemical functions associated with the assembled state...
January 21, 2017: Current Opinion in Biotechnology
Joseph M Slocik, Rajesh R Naik
Biomolecules represent an invaluable resource to nanotechnology by providing a large diversity of highly functional biomolecular templates. As a result, these have been extensively used for controlling the synthesis, functionalization, and assembly of nanomaterials, while also creating materials with new properties and structures. In the following, we focus on the use of peptides to achieve these goals and describe their general utility, sequence programmability, and use as templates. Also, we highlight several recent advances in the identification and selection of high affinity nanomaterial-binding peptides, provide a few examples of peptide functionalized surfaces and peptide templated materials, and describe how simple modifications to well characterized nanomaterial-binding peptides can be used to manipulate interactions and physiochemical properties...
January 11, 2017: Current Opinion in Biotechnology
Nicole V DelRosso, Nathan D Derr
Cytoskeletal molecular motors provide exciting proof that nanoscale transporters can be highly efficient, moving for microns along filamentous tracks by hydrolyzing ATP to fuel nanometer-size steps. For nanotechnology, such conversion of chemical energy into productive work serves as an enticing platform for re-purposing and re-engineering. It also provides a roadmap for successful molecular mechanisms that can be mimicked to create de novo molecular motors for nanotechnology applications. Here we focus specifically on how the mechanisms of molecular motors are being re-engineered for greater control over their transport parameters...
January 11, 2017: Current Opinion in Biotechnology
Arnout Rd Voet, Jeremy Rh Tame
There is currently intense interest in using protein scaffolds to prepare uniform nanometre-sized clusters of metals or other inorganic material for use as sensors, imaging agents, drugs, magnetic materials or catalysts. Non-templated chemical synthesis of such clusters often results in a product of variable size and quality, but protein molecules have proved adept at nucleating and stabilizing precise nanoclusters of various kinds. Although much research has focused on natural proteins, such as the iron-storage protein ferritin, recent developments in protein design have allowed entirely novel, symmetrical proteins to be used as templates for the first time...
January 11, 2017: Current Opinion in Biotechnology
Antoine Mottier, Florence Mouchet, √Čric Pinelli, Laury Gauthier, Emmanuel Flahaut
Nano-ecotoxicology is an emerging science which aims to assess the environmental effect of nanotechnologies. The development of this particular aspect of ecotoxicology was made necessary in order to evaluate the potential impact of recently produced and used materials: nanoparticles (NPs). Among all the types of NPs, carbon nanoparticles (CNPs) especially draw attention giving the increasing number of applications and integration into consumer products. However the potential impacts of CNPs in the environment remain poorly known...
January 11, 2017: Current Opinion in Biotechnology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"