Read by QxMD icon Read

Current Opinion in Biotechnology

Aymeric Goyer
Thiamin is essential for human health. While plants are the ultimate source of thiamin in most human diets, staple foods like white rice have low thiamin content. Therefore, populations whose diets are mainly based on low-thiamin staple crops suffer from thiamin deficiency. Biofortification of rice grain by engineering the thiamin biosynthesis pathway has recently been attempted, with up to 5-fold increase in thiamin content in unpolished seeds. However, polished seeds that retain only the starchy endosperm had similar thiamin content than that of non-engineered plants...
October 14, 2016: Current Opinion in Biotechnology
Harold D May, Patrick J Evans, Edward V LaBelle
Risks associated with climate change are driving the search for new technologies to produce fuels and chemicals. The microbial electrosynthesis of chemical compounds, using electricity and CO2 as feedstock and microbes to deliver the catalysts, has the potential to be one of those technologies. Central to the production of multicarbon compounds by this process is the bioelectrosynthesis of acetate (electroacetogenesis), and significant improvements in productivity and insightful discoveries concerning the extracellular transfer of electrons to the acetogenic microorganisms have been made recently...
October 12, 2016: Current Opinion in Biotechnology
Seth D Rhoades, Arjun Sengupta, Aalim M Weljie
Sleep and circadian rhythms studies have recently benefited from metabolomics analyses, uncovering new connections between chronobiology and metabolism. From untargeted mass spectrometry to quantitative nuclear magnetic resonance spectroscopy, a diversity of analytical approaches has been applied for biomarker discovery in the field. In this review we consider advances in the application of metabolomics technologies which have uncovered significant effects of sleep and circadian cycles on several metabolites, namely phosphatidylcholine species, medium-chain carnitines, and aromatic amino acids...
October 1, 2016: Current Opinion in Biotechnology
Teesha C Baker, Jun Han, Christoph H Borchers
Matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a robust tool for spatially resolved analysis of biomolecules in situ. Recent advances in high ionization-efficiency MALDI matrices, new matrix deposition procedures, and the development of high spatial-resolution and high sensitivity MS instruments continue to drive new applications of MALDI-MSI, along with other MSI techniques, which allow us to visualize and determine the regio-specific and temporal changes in proteins, peptides, lipids, drug molecules, and metabolites within the tissues, cells and microorganisms...
September 27, 2016: Current Opinion in Biotechnology
Esteban Martínez-García, Víctor de Lorenzo
The onset of techniques for both editing extant bacterial chromosomes and synthesizing long DNA sequences has enabled addressing the question on the smallest set of genes and biological functions that are required for running an operative cell. But this is not only a fundamental scientific endeavour: simpler genomes could be easier to understand and eventually reprogram for the sake of diverse applications. This has fostered efforts to eliminate apparently useless - if not annoying DNA segments from many biotechnologically relevant strains as well as attempts to (re)write complete genomes á la carte...
September 20, 2016: Current Opinion in Biotechnology
Hamid R Eghbalnia, Pedro R Romero, William M Westler, Kumaran Baskaran, Eldon L Ulrich, John L Markley
The metabolome, the collection of small molecules associated with an organism, is a growing subject of inquiry, with the data utilized for data-intensive systems biology, disease diagnostics, biomarker discovery, and the broader characterization of small molecules in mixtures. Owing to their close proximity to the functional endpoints that govern an organism's phenotype, metabolites are highly informative about functional states. The field of metabolomics identifies and quantifies endogenous and exogenous metabolites in biological samples...
September 16, 2016: Current Opinion in Biotechnology
Jérémy Marchand, Estelle Martineau, Yann Guitton, Gaud Dervilly-Pinel, Patrick Giraudeau
Multi-dimensional NMR is an appealing approach for dealing with the challenging complexity of biological samples in metabolomics. This article describes how spectroscopists have recently challenged their imagination in order to make 2D NMR a powerful tool for quantitative metabolomics, based on innovative pulse sequences combined with meticulous analytical chemistry approaches. Clever time-saving strategies have also been explored to make 2D NMR a high-throughput tool for metabolomics, relying on alternative data acquisition schemes such as ultrafast NMR...
September 13, 2016: Current Opinion in Biotechnology
Seohyoung Kim, Seokjung Cheong, Alexander Chou, Ramon Gonzalez
Fatty acid oxidation pathways are attractive for metabolic engineering purposes due to their cyclic nature as well as their reactions that allow for the selective functionalization of alkyl chains. These characteristics allow for the production of various chemicals, such as alcohols, alkanes, ketones and hydroxyacids, in a wide range of carbon numbers. To this end, the α-, β-, and ω-oxidation pathways have been engineered for use in various hosts. Furthermore, the β-oxidation pathway has been engineered to operate in reverse, resulting in a promising carbon chain elongation platform...
September 13, 2016: Current Opinion in Biotechnology
Dana M Freund, Adrian D Hegeman
Methods employing isotope labeled compounds have been an important part of the bioanalytical canon for many decades. The past fifteen years have seen the development of many new approaches using stable (non-radioactive) isotopes as labels for high-throughput bioanalytical, 'omics-scale' measurements of metabolites (metabolomics) and proteins (proteomics). This review examines stable isotopic labeling approaches that have been developed for labeling whole intact plants, plant tissues, or crude extracts of plant materials with stable isotopes (mainly using (2)H, (13)C, (15)N, (18)O or (34)S)...
September 6, 2016: Current Opinion in Biotechnology
John L Markley, Rafael Brüschweiler, Arthur S Edison, Hamid R Eghbalnia, Robert Powers, Daniel Raftery, David S Wishart
The two leading analytical approaches to metabolomics are mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Although currently overshadowed by MS in terms of numbers of compounds resolved, NMR spectroscopy offers advantages both on its own and coupled with MS. NMR data are highly reproducible and quantitative over a wide dynamic range and are unmatched for determining structures of unknowns. NMR is adept at tracing metabolic pathways and fluxes using isotope labels. Moreover, NMR is non-destructive and can be utilized in vivo...
August 27, 2016: Current Opinion in Biotechnology
Allison M Roberts, Carl C Ward, Daniel K Nomura
Despite the completion of human genome sequencing efforts nearly 15 years ago that brought with it the promise of genome-based discoveries that would cure human diseases, most protein targets that control human diseases have remained largely untranslated, in-part because they represent difficult protein targets to drug. In addition, many of these protein targets lack screening assays or accessible binding pockets, making the development of small-molecule modulators very challenging. Here, we discuss modern methods for activity-based protein profiling-based chemoproteomic strategies to map 'ligandable' hotspots in proteomes using activity and reactivity-based chemical probes to allow for pharmacological interrogation of these previously difficult targets...
August 25, 2016: Current Opinion in Biotechnology
Kerem Bingol, Rafael Brüschweiler
Metabolomics continues to make rapid progress through the development of new and better methods and their applications to gain insight into the metabolism of a wide range of different biological systems from a systems biology perspective. Customization of NMR databases and search tools allows the faster and more accurate identification of known metabolites, whereas the identification of unknowns, without a need for extensive purification, requires new strategies to integrate NMR with mass spectrometry, cheminformatics, and computational methods...
August 20, 2016: Current Opinion in Biotechnology
Zhen Chen, An-Ping Zeng
Protein engineering for the improvement of properties of biocatalysts and for the generation of novel metabolic pathways plays more and more important roles in chemical biotechnology aiming at the production of chemicals from biomass. Although widely used in single-enzyme catalysis process, protein engineering is only being increasingly explored in recent years to achieve more complex in vitro and in vivo biocatalytic processes. This review focuses on major contributions of protein engineering to chemical biotechnology in the field of multi-enzymatic cascade catalysis and metabolic engineering...
August 12, 2016: Current Opinion in Biotechnology
Judith Becker, Christoph Wittmann
For more than fifty years, Escherichia coli has represented a remarkable success story in industrial biotechnology. Traditionally known as a producer of l-amino acids, E. coli has also entered the precious market of high-value molecules and is becoming a flexible, efficient production platform for various therapeutics, pre-biotics, nutraceuticals and pigments. This tremendous progress is enabled by systems metabolic engineering concepts that integrate systems biology and synthetic biology into the design and engineering of powerful E...
August 8, 2016: Current Opinion in Biotechnology
Tyler D Huber, Brooke R Johnson, Jianjun Zhang, Jon S Thorson
S-Adenosyl-l-methionine (AdoMet) is an essential enzyme cosubstrate in fundamental biology with an expanding range of biocatalytic and therapeutic applications. In recent years, technologies enabling the synthesis and utilization of novel functional AdoMet surrogates have rapidly advanced. Developments highlighted within this brief review include improved syntheses of AdoMet analogs, unique S-adenosyl-l-methionine isosteres with enhanced stability, and corresponding applications in epigenetics, proteomics and natural product/small molecule diversification ('alkylrandomization')...
August 6, 2016: Current Opinion in Biotechnology
Hans-Hermann Richnow, Tillmann Lueders
No abstract text is available yet for this article.
October 2016: Current Opinion in Biotechnology
Martin Blaser, Ralf Conrad
While the structure of microbial communities can nowadays be determined by applying molecular analytical tools to soil samples, microbial function can usually only be determined by physiological experiments requiring incubation of samples. However, analysis of stable isotope fractionation might be able to analyse microbial function without incubation in soil samples. We describe the limitations of diagnosing and quantifying carbon flux pathways in soil by using the determination of stable carbon isotope composition in soil compounds and emphasize the importance of determining stable isotope fractionation factors for defined biochemical pathways...
October 2016: Current Opinion in Biotechnology
Haibo Jiang, Matthew R Kilburn, Johan Decelle, Niculina Musat
Nano-scale Secondary Ion Mass Spectrometry (NanoSIMS) is one of the most powerful in situ elemental and isotopic analysis techniques available to biologists. The combination of stable isotope probing with NanoSIMS (nanoSIP) has opened up new avenues for biological studies over the past decade. However, due to limitations inherent with any analytical methodology, additional information from correlative techniques is usually required to address real biological questions. Here we review recent developments in correlative analysis applied to complex biological systems: first, high-resolution tracking of molecules (e...
October 2016: Current Opinion in Biotechnology
April Kloxin, Kyongbum Lee
No abstract text is available yet for this article.
August 2016: Current Opinion in Biotechnology
Jennifer Brooke Treweek, Viviana Gradinaru
The scientific community has learned a great deal from imaging small and naturally transparent organisms such as nematodes and zebrafish. The consequences of genetic mutations on their organ development and survival can be visualized easily and with high-throughput at the organism-wide scale. In contrast, three-dimensional information is less accessible in mammalian subjects because the heterogeneity of light-scattering tissue elements renders their organs opaque. Likewise, genetically labeling desired circuits across mammalian bodies is prohibitively slow and costly via the transgenic route...
August 2016: Current Opinion in Biotechnology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"