Read by QxMD icon Read

Seminars in Immunology

Yvette J E Sloot, Johannes W Smit, Leo A B Joosten, Romana T Netea-Maier
Interleukin 32 (IL-32) is a proinflammatory cytokine involved in the development of several diseases, including cancer. IL-32 is a rather peculiar cytokine because its protein structure does not show resemblance with any of the known cytokines, and an IL-32 receptor to facilitate extracellular signaling has not yet been identified. Thus far, 9 isoforms of IL-32 have been described, all of which show differences in terms of effects and in potency to elicit a specific effect. Since the first report of IL-32 in 2005, there is increasing evidence that IL-32 plays an important role in the pathophysiology of both hematologic malignancies and solid tumors...
May 7, 2018: Seminars in Immunology
Sjoerd H van der Burg
Cancer vaccines are solely meant to amplify the pool of type 1 cytokine oriented CD4+ and CD8+ T cells that recognize tumor antigen and ultimately foster control and destruction of a growing tumor. They are not designed to deal with all aspects of immune ignorance, exclusion, suppression and escape that are generally in place in patients with cancer and may prevent the T cells to enter the tumor or to exert their effector function. This simple fact prompted for a reappraisal of the many recent trials in which therapeutic cancer vaccines have been examined as monotherapy...
April 27, 2018: Seminars in Immunology
M P Reichhardt, S Meri
It has become increasingly apparent that the complement system, being an ancient defense mechanism, is not operative only in the extracellular milieu but also intracellularly. In addition to the known synthetic machinery in the liver and by macrophages, many other cell types, including lymphocytes, adipocytes and epithelial cells produce selected complement components. Activation of e.g. C3 and C5 inside cells may have multiple effects ranging from direct antimicrobial defense to cell differentiation and possible influence on metabolism...
April 7, 2018: Seminars in Immunology
Christian D Sadik, Yoshishige Miyabe, Tanya Sezin, Andrew D Luster
The deposition of IgG autoantibodies in peripheral tissues and the subsequent activation of the complement system, which leads to the accumulation of the anaphylatoxin C5a in these tissues, is a common hallmark of diverse autoimmune diseases, including rheumatoid arthritis (RA) and pemphigoid diseases (PDs). C5a is a potent chemoattractant for granulocytes and mice deficient in its precursor C5 or its receptor C5aR1 are resistant to granulocyte recruitment and, consequently, to tissue inflammation in several models of autoimmune diseases...
March 27, 2018: Seminars in Immunology
Menno van Lookeren Campagne, Admar Verschoor
Rapid elimination of microbes from the bloodstream, along with the ability to mount an adaptive immune response, are essential for optimal host-defense. Kupffer cells are strategically positioned in the liver sinusoids and efficiently capture circulating microbes from the hepatic artery and portal vein, thus preventing bacterial dissemination. In vivo and in vitro studies have probed how complement receptor of the immunoglobulin superfamily (CRIg), also referred to as Z39Ig and V-set and Ig domain-containing 4 (VSIG4), acts as a critical player in pathogen recognition and clearance...
March 21, 2018: Seminars in Immunology
Jéssica C Dos Santos, Michelle S M A Damen, Leo A B Joosten, Fátima Ribeiro-Dias
Interleukin 32 (IL-32) is an intracellular cytokine produced by immune and non immune cells after different stimuli. It contributes to inflammation and control of intracellular pathogens mainly by inducing proinflammatory cytokines and microbicidal molecules. Evidence is rising showing that IL-32 can be considered an endogenous danger signal after tissue injury, amplifying the inflammatory process and acquired immune responses. It seems to be a master regulator of intracellular infectious diseases. In this review, first the general properties of IL-32 are described followed by its role in the immunopathogenesis of inflammatory and infectious diseases...
March 15, 2018: Seminars in Immunology
Marie-Elise Truchetet, Thomas Pradeu
Robustness, understood as the maintenance of specific functionalities of a given system against internal and external perturbations, is pervasive in today's biology. Yet precise applications of this notion to the immune system have been scarce. Here we show that the concept of robustness sheds light on tissue repair, and particularly on the crucial role the immune system plays in this process. We describe the specific mechanisms, including plasticity and redundancy, by which robustness is achieved in the tissue reconstruction system (TRS)...
March 14, 2018: Seminars in Immunology
Ulf Andersson, Huan Yang, Helena Harris
Alarmins are preformed, endogenous molecules that can be promptly released to signal cell or tissue stress or damage. The ubiquitous nuclear molecule high-mobility group box 1 protein (HMGB1) is a prototypical alarmin activating innate immunity. HMGB1 serves a dual alarmin function. The protein can be emitted to alert adjacent cells about endangered homeostasis of the HMGB1-releasing cell. In addition to this expected path of an alarmin, extracellular HMGB1 can be internalized via RAGE-receptor mediated endocytosis to the endolysosomal compartment while attached to other extracellular proinflammatory molecules...
March 9, 2018: Seminars in Immunology
Owen A Hawksworth, Liam G Coulthard, Susanna Mantovani, Trent M Woodruff
From its discovery in the late nineteenth century, as a 'complement' to the cellular immune response, the complement system has been widely affirmed as a powerful controller of innate and adaptive immune responses. In recent decades however, new roles for complement have been discovered, with multiple complement proteins now known to function in a broad array of non-immune systems. This includes during development, where complement exerts control over stem cell populations from fertilization and implantation throughout embryogenesis and beyond post-natal development...
March 7, 2018: Seminars in Immunology
De Yang, Zhen Han, Md Masud Alam, Joost J Oppenheim
High-mobility group (HMG) nucleosome binding domain 1 (HMGN1), which previously was thought to function only as a nucleosome-binding protein that regulates chromatin structure, histone modifications, and gene expression, was recently discovered to be an alarmin that contributes extracellularly to the generation of innate and adaptive immune responses. HMGN1 promotes DC recruitment through interacting with a Gαi protein-coupled receptor (GiPCR) and activates DCs predominantly through triggering TLR4. HMGN1 preferentially promotes Th1-type immunity, which makes it relevant for the fields of vaccinology, autoimmunity, and oncoimmunology...
March 1, 2018: Seminars in Immunology
Christian Sina, Claudia Kemper, Stefanie Derer
The complement system is part of innate sensor and effector systems such as the Toll-like receptors (TLRs). It recognizes and quickly systemically and/or locally respond to microbial-associated molecular patterns (MAMPs) with a tailored defense reaction. MAMP recognition by intestinal epithelial cells (IECs) and appropriate immune responses are of major importance for the maintenance of intestinal barrier function. Enterocytes highly express various complement components that are suggested to be pivotal for proper IEC function...
February 24, 2018: Seminars in Immunology
Manoj K Pandey, Gregory A Grabowski, Jörg Köhl
The complement system is well appreciated for its role as an important effector of innate immunity that is activated by the classical, lectin or alternative pathway. C5a is one important mediator of the system that is generated in response to canonical and non-canonical C5 cleavage by circulating or cell-derived proteases. In addition to its function as a chemoattractant for neutrophils and other myeloid effectors, C5a and its sister molecule C3a have concerted roles in cell homeostasis and surveillance. Through activation of their cognate G protein coupled receptors, C3a and C5a regulate multiple intracellular pathways within the mitochondria and the lysosomal compartments that harbor multiple enzymes critical for protein, carbohydrate and lipid metabolism...
February 22, 2018: Seminars in Immunology
Mathilde J H Girard-Madoux, Mercedes Gomez de Agüero, Stephanie C Ganal-Vonarburg, Catherine Mooser, Gabrielle T Belz, Andrew J Macpherson, Eric Vivier
Biological redundancy ensures robustness in living organisms at several levels, from genes to organs. In this review, we explore the concept of redundancy and robustness through an analysis of the caecal appendix, an organ that is often considered to be a redundant remnant of evolution. However, phylogenic data show that the Appendix was selected during evolution and is unlikely to disappear once it appeared. In humans, it is highly conserved and malformations are extremely rare, suggesting a role for that structure...
April 2018: Seminars in Immunology
R Halbgebauer, C Q Schmidt, C M Karsten, A Ignatius, M Huber-Lang
During local and systemic inflammation, the complement system and neutrophil granulocytes are activated not only by pathogens, but also by released endogenous danger signals. It is recognized increasingly that complement-mediated neutrophil activation plays an ambivalent role in sepsis pathophysiology. According to the current definition, the onset of organ dysfunction is a hallmark of sepsis. The preceding organ damage can be caused by excessive complement activation and neutrophil actions against the host, resulting in bystander injury of healthy tissue...
February 14, 2018: Seminars in Immunology
Martin Kolev, Maciej M Markiewski
Complement was initially discovered as an assembly of plasma proteins "complementing" the cytolytic activity of antibodies. However, our current knowledge places this complex system of several plasma proteins, receptors, and regulators in the center of innate immunity as a bridge between the initial innate responses and adaptive immune reactions. Consequently, complement appears to be pivotal for elimination of pathogens, not only as an early response defense, but by directing the subsequent adaptive immune response...
February 14, 2018: Seminars in Immunology
Henry Nording, Harald F Langer
The complement system is a versatile part of our immune system. Various intersection points of complement with other cells and molecules of the immune response are well described. Platelets are classically conceived as cells of hemostasis. In recent years, however, several functions of platelets "beyond thrombosis" were discovered. This review depicts the crosstalk of platelets with components of the immune system in the context of thrombo-inflammation. In particular, the various ways, in which platelets interact with the complement system, are illustrated...
February 6, 2018: Seminars in Immunology
Vincenzo Bronte
No abstract text is available yet for this article.
February 2018: Seminars in Immunology
Francesco De Sanctis, Stefano Ugel, John Facciponte, Andrea Facciabene
Angiogenesis is a hallmark of cancer and a requisite that tumors must achieve to fulfill their metabolic needs of nutrients and oxygen. As a critical step in cancer progression, the 'angiogenic switch' allows tumor cells to survive and grow, and provides them access to vasculature resulting in metastatic progression and dissemination. Tumor-dependent triggering of the angiogenic switch has critical consequences on tumor progression which extends from an increased nutrient supply and relies instead on the ability of the tumor to hijack the host immune response for the generation of a local immunoprivileged microenvironment...
February 2018: Seminars in Immunology
A Rigoni, M P Colombo, C Pucillo
Basophils, eosinophils and mast cells were first recognized by Paul Ehrlich in the late 19th century. These cells have common, but non-redundant roles, in the pathogenesis of allergic diseases and in the protection against parasites. Nevertheless, in virtue of their shared-adeptness to produce a huge variety of immunological mediators and express membrane-bound receptors, they are able to interact with immune and non-immune components of the tissue microenvironment, contributing to the regulation of tissue homeostasis and immune response while participating to further deregulation of tissues transforming into neoplasia...
February 2018: Seminars in Immunology
Tik Shing Cheung, Francesco Dazzi
Several studies have demonstrated how different cell types of mesenchymal and myeloid origin can independently exhibit immunoregulatory activities. In response to inflammatory cues, they transcribe a molecular repertoire that restores the tissue microenvironment to what it was before the injury. There is accumulating evidence that stromal and myeloid-derived cells do not act independently but that the establishment of a cross-talk between them is a fundamental requirement. Stromal cells, prompted by inflammatory molecules, orchestrate and initiate myeloid cell recruitment and their functional reprogramming...
February 2018: Seminars in Immunology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"