Read by QxMD icon Read

FEMS Microbiology Reviews

Karine A Gibbs, Aimee Shen
No abstract text is available yet for this article.
September 27, 2016: FEMS Microbiology Reviews
Kyle L Asfahl, Martin Schuster
Cooperation and conflict in microorganisms is being recognized as an important factor in the organization and function of microbial communities. Many of the cooperative behaviors described in bacteria are governed through a cell-cell signaling process generally termed quorum sensing. Communication and cooperation in diverse microorganisms exhibit predictable trends that behave according to social evolutionary theory, notably that public goods dilemmas produce selective pressures for divergence in social phenotypes including cheating...
September 26, 2016: FEMS Microbiology Reviews
Charles J Woodrow, Nicholas J White
Artemisinins are the most rapidly acting of currently available antimalarial drugs. Artesunate has become the treatment of choice for severe malaria, and artemisinin-based combination therapies (ACTs) are the foundation of modern falciparum malaria treatment globally. Their safety and tolerability profile is excellent. Unfortunately, Plasmodium falciparum infections with mutations in the 'K13' gene, with reduced ring-stage susceptibility to artemisinins, and slow parasite clearance in patients treated with ACTs, are now widespread in Southeast Asia...
September 8, 2016: FEMS Microbiology Reviews
Nikolas M Stasulli, Elizabeth A Shank
The ability of microbes to secrete bioactive chemical signals into their environment has been known for over a century. However, it is only in the last decade that imaging mass spectrometry has provided us with the ability to directly visualize the spatial distributions of these microbial metabolites. This technology involves collecting mass spectra from multiple discrete locations across a biological sample, yielding chemical 'maps' that simultaneously reveal the distributions of hundreds of metabolites in two dimensions...
September 2, 2016: FEMS Microbiology Reviews
Manuel Montalbán-López, Auke J van Heel, Oscar P Kuipers
As the number of new antibiotics that reach the market is decreasing and the demand for them is rising, alternative sources of novel antimicrobials are needed. Lantibiotics are potent peptide antimicrobials that are ribosomally synthesized and stabilized by post-translationally introduced lanthionine rings. Their ribosomal synthesis and enzymatic modifications provide excellent opportunities to design and engineer a large variety of novel antimicrobial compounds. The research conducted in this area demonstrates that the modularity present in both the peptidic rings as well as in the combination of promiscuous modification enzymes can be exploited to further increase the diversity of lantibiotics...
September 2, 2016: FEMS Microbiology Reviews
Bethany K Okada, Mohammad R Seyedsayamdost
Natural products have traditionally served as a dominant source of therapeutic agents. They are produced by dedicated biosynthetic gene clusters that assemble complex, bioactive molecules from simple precursors. Recent genome sequencing efforts coupled with advances in bioinformatics indicate that the majority of biosynthetic gene clusters are not expressed under normal laboratory conditions. Termed 'silent' or 'cryptic', these gene clusters represent a treasure trove for discovery of novel small molecules, their regulatory circuits and their biosynthetic pathways...
August 29, 2016: FEMS Microbiology Reviews
Chris R Reid, Tanya Latty
The study of collective behaviour aims to understand how individual-level behaviours can lead to complex group-level patterns. Collective behaviour has primarily been studied in animal groups such as colonies of insects, flocks of birds and schools of fish. Although less studied, collective behaviour also occurs in microorganisms. Here, we argue that slime moulds are powerful model systems for solving several outstanding questions in collective behaviour. In particular, slime mould may hold the key to linking individual-level mechanisms to colony-level behaviours...
August 29, 2016: FEMS Microbiology Reviews
Jan Dolinšek, Felix Goldschmidt, David R Johnson
Assemblages of microbial genotypes growing together can display surprisingly complex and unexpected dynamics and result in community-level functions and behaviors that are not readily expected from analyzing each genotype in isolation. This complexity has, at least in part, inspired a discipline of synthetic microbial ecology. Synthetic microbial ecology focuses on designing, building and analyzing the dynamic behavior of 'ecological circuits' (i.e. a set of interacting microbial genotypes) and understanding how community-level properties emerge as a consequence of those interactions...
August 26, 2016: FEMS Microbiology Reviews
Christina Schäffer, Paul Messner
Glycosylation of proteins is one of the most prevalent post-translational modifications occurring in nature, with a wide repertoire of biological implications. Pathways for the main types of this modification, the N- and O-glycosylation, can be found in all three domains of life-the Eukarya, Bacteria and Archaea-thereby following common principles, which are valid also for lipopolysaccharides, lipooligosaccharides and glycopolymers. Thus, studies on any glycoconjugate can unravel novel facets of the still incompletely understood fundamentals of protein N- and O-glycosylation...
August 26, 2016: FEMS Microbiology Reviews
Daniela Büttner
Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression...
August 14, 2016: FEMS Microbiology Reviews
Robert Duran, Cristiana Cravo-Laureau
Polycyclic aromatic hydrocarbons (PAHs) are widespread in marine ecosystems and originate from natural sources and anthropogenic activities. PAHs enter the marine environment in two main ways, corresponding to chronic pollution or acute pollution by oil spills. The global PAH fluxes in marine environments are controlled by the microbial degradation and the biological pump, which plays a role in particle settling and in sequestration through bioaccumulation. Due to their low water solubility and hydrophobic nature, PAHs tightly adhere to sediments leading to accumulation in coastal and deep sediments...
August 12, 2016: FEMS Microbiology Reviews
Wen-Sui Lo, Ya-Yi Huang, Chih-Horng Kuo
Symbiosis between organisms is an important driving force in evolution. Among the diverse relationships described, extensive progress has been made in insect-bacteria symbiosis, which improved our understanding of the genome evolution in host-associated bacteria. Particularly, investigations on several obligate mutualists have pushed the limits of what we know about the minimal genomes for sustaining cellular life. To bridge the gap between those obligate symbionts with extremely reduced genomes and their non-host-restricted ancestors, this review focuses on the recent progress in genome characterization of facultative insect symbionts...
August 12, 2016: FEMS Microbiology Reviews
Hans P Steenackers, Ilse Parijs, Akanksha Dubey, Kevin R Foster, Jozef Vanderleyden
No abstract text is available yet for this article.
August 11, 2016: FEMS Microbiology Reviews
Annika Flint, Alain Stintzi, Lígia M Saraiva
Helicobacter and Campylobacter species are Gram-negative microaerophilic host-associated heterotrophic bacteria that invade the digestive tract of humans and animals. Campylobacter jejuni is the major worldwide cause of foodborne gastroenteritis in humans, while Helicobacter pylori is ubiquitous in over half of the world's population causing gastric and duodenal ulcers. The colonisation of the gastrointestinal system by Helicobacter and Campylobacter relies on numerous cellular defences to sense the host environment and respond to adverse conditions, including those imposed by the host immunity...
August 1, 2016: FEMS Microbiology Reviews
Ryan Finethy, Jörn Coers
The bacterium Chlamydia trachomatis is the etiological agent of the most common sexually transmitted infection in North America and Europe. Medical complications resulting from genital C. trachomatis infections arise predominantly in women where the initial infections often remain asymptomatic and thus unrecognized. Untreated asymptomatic infections in women can ascend into the upper genital tract and establish persistence, ultimately resulting in extensive scarring of the reproductive organs, pelvic inflammatory disease, infertility and ectopic pregnancies...
July 29, 2016: FEMS Microbiology Reviews
Emma S Sherling, Christiaan van Ooij
Malaria is caused by infection of erythrocytes by parasites of the genus Plasmodium To survive inside erythrocytes, these parasites induce sweeping changes within the host cell, one of the most dramatic of which is the formation of multiple membranous compartments, collectively referred to as the exomembrane system. As an uninfected mammalian erythrocyte is devoid of internal membranes, the parasite must be the force and the source behind the formation of these compartments. Even though the first evidence of the presence these of internal compartments was obtained over a century ago, their functions remain mostly unclear, and in some cases completely unknown, and the mechanisms underlying their formation are still mysterious...
September 2016: FEMS Microbiology Reviews
Oier Etxebeste, Eduardo A Espeso
Multiple fungal species penetrate substrates and accomplish host invasion through the fast, permanent and unidirectional extension of filamentous cells known as hyphae. Polar growth of hyphae results, however, in a significant increase in the distance between the polarity site, which also receives the earliest information about ambient conditions, and nuclei, where adaptive responses are executed. Recent studies demonstrate that these long distances are overcome by signal transduction pathways which convey sensory information from the polarity site to nuclei, controlling development and pathogenesis...
September 2016: FEMS Microbiology Reviews
Dominik Esser, Lena Hoffmann, Trong Khoa Pham, Christopher Bräsen, Wen Qiu, Phillip C Wright, Sonja-Verena Albers, Bettina Siebers
Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems...
September 2016: FEMS Microbiology Reviews
Satish Adhikari, Patrick D Curtis
Epigenetics is a change in gene expression that is heritable without a change in DNA sequence itself. This phenomenon is well studied in eukaryotes, particularly in humans for its role in cellular differentiation, X chromosome inactivation and diseases like cancer. However, comparatively little is known about epigenetic regulation in bacteria. Bacterial epigenetics is mainly present in the form of DNA methylation where DNA methyltransferases add methyl groups to nucleotides. This review focuses on two methyltransferases well characterized for their roles in gene regulation: Dam and CcrM...
September 2016: FEMS Microbiology Reviews
Damián Lobato-Márquez, Ramón Díaz-Orejas, Francisco García-Del Portillo
Bacterial virulence relies on a delicate balance of signals interchanged between the invading microbe and the host. This communication has been extensively perceived as a battle involving harmful molecules produced by the pathogen and host defenses. In this review, we focus on a largely unexplored element of this dialogue, as are toxin-antitoxin (TA) systems of the pathogen. TA systems are reported to respond to stresses that are also found in the host and, as a consequence, could modulate the physiology of the intruder microbe...
September 2016: FEMS Microbiology Reviews
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"