Read by QxMD icon Read

Advances in Colloid and Interface Science

Longhua Xu, Jia Tian, Houqin Wu, Zhongyuan Lu, Wei Sun, Yuehua Hu
The analysis of flotation and adsorption of mixed collectors on oxide and silicate minerals is of great importance for both industrial applications and theoretical research. Over the past years, significant progress has been achieved in understanding the adsorption of single collectors in micelles as well as at interfaces. By contrast, the self-assembly of mixed collectors at liquid/air and solid/liquid interfaces remains a developing area as a result of the complexity of the mixed systems involved and the limited availability of suitable analytical techniques...
November 11, 2017: Advances in Colloid and Interface Science
Lumeng Liu, Shiliang Johnathan Tan, Toshihide Horikawa, D D Do, D Nicholson, Junjie Liu
Water adsorption on carbonaceous materials has been studied increasingly in the recent years, not only because of its impact on many industrial processes, but also motivated by a desire to understand, at a fundamental level, the distinctive character of directional interactions between water molecules, and between water molecules and other polar groups, such as the functional groups (FGs) at the surfaces of graphene layers. This paper presents an extensive review of recent experimental and theoretical work on water adsorption on various carbonaceous materials, with the aim of gaining a better understanding of how water adsorption in carbonaceous materials relates to the concentration of FGs, their topology (arrangement of the groups) and the structure of the confined space in porous carbons...
November 9, 2017: Advances in Colloid and Interface Science
Dan Li, Zhenhua Chen, Xifan Mei
Noble metal nanoclusters have attracted great attentions in the area of fluorescence related applications due to their special properties such as low toxicity, excellent photostability and bio-compatibility. However, they still describe disadvantages for low quantum yield compared to quantum dots and organic dyes though the brightness of the fluorescence play an important role for the efficiency of the applications. Attentions have been attracted for exploring strategies to enhance the fluorescence based on the optical fundamentals through various protocols...
November 7, 2017: Advances in Colloid and Interface Science
Niar Gusnaniar, Henny C van der Mei, Wenwen Qu, Titik Nuryastuti, Johanna M M Hooymans, Jelmer Sjollema, Henk J Busscher
Bacterial adhesion is a main problem in many biomedical, domestic, natural and industrial environments and forms the onset of the formation of a biofilm, in which adhering bacteria grow into a multi-layered film while embedding themselves in a matrix of extracellular polymeric substances. It is usually assumed that bacterial adhesion occurs from air or by convective-diffusion from a liquid suspension, but often bacteria adhere by transmission from a bacterially contaminated donor to a receiver surface. Therewith bacterial transmission is mechanistically different from adhesion, as it involves bacterial detachment from a donor surface followed by adhesion to a receiver one...
November 5, 2017: Advances in Colloid and Interface Science
Marek Kosmulski
The pristine points of zero charge (PZC) and isoelectric points (IEP) of metal oxides and IEP of other materials from the recent literature, and a few older results (overlooked in previous searches) are summarized. This study is an update of the previous compilations by the same author [Surface Charging and Points of Zero Charge, CRC, Boca Raton, 2009; J. Colloid Interface Sci. 337 (2009) 439; 353 (2011) 1; 426 (2014) 209]. The field has been very active, but most PZC and IEP are reported for materials, which are very well-documented already (silica, alumina, titania, iron oxides)...
November 3, 2017: Advances in Colloid and Interface Science
Jyotsana Pathak, Eepsita Priyadarshini, Kamla Rawat, H B Bohidar
In this review, a number of systems are described to demonstrate the effect of polyelectrolyte chain stiffness (persistence length) on the coacervation phenomena, after we briefly review the field. We consider two specific types of complexation/coacervation: in the first type, DNA is used as a fixed substrate binding to flexible polyions such as gelatin A, bovine serum albumin and chitosan (large persistence length polyelectrolyte binding to low persistence length biopolymer), and in the second case, different substrates such as gelatin A, bovine serum albumin, and chitosan were made to bind to a polyion gelatin B (low persistence length substrate binding to comparable persistence length polyion)...
November 3, 2017: Advances in Colloid and Interface Science
Jianlong Wang, Anh V Nguyen
Van der Waals forces are one of the important components of intermolecular, colloidal and surface forces governing many phenomena and processes. The latest examples include the colloidal interactions between hydrophobic colloids and interfaces in ambient (non-degassed) water in which dissolved gases and nanobubbles are shown to affect the van der Waals attractions significantly. The advanced computation of van der Waals forces in aqueous systems by the Lifshitz theory requires reliable data for water dielectric spectra...
October 31, 2017: Advances in Colloid and Interface Science
Leonardo Chiappisi
In this work, an overview on aqueous solutions of polyoxyethylene alkyl ether carboxylic acids is given. Unique properties arise from the combination of the nonionic, temperature-responsive polyoxyethylene block with the weakly ionic, pH-responsive carboxylic acid termination in a single surfactant headgroup. Accordingly, this class of surfactant finds broad application across very different sectors. Despite their large use on an industrial and a technical scale, the literature lacks a systematic and detailed characterization of their physico-chemical properties which is provided herein...
October 13, 2017: Advances in Colloid and Interface Science
Kosmas Ellinas, Angeliki Tserepi, Evangelos Gogolides
Wetting control is essential for many applications, such as self-cleaning, anti-icing, anti-fogging, antibacterial action as well as anti-reflection and friction control. While significant effort has been devoted to fabricate superhydrophobic/superamphiphobic surfaces (repellent to water and other low surface tension liquids), very few polymeric superhydrophobic/superamphiphobic surfaces can be considered as durable against various externally imposed stresses (e.g. application of heating, pressure, mechanical forces, chemical, etc...
October 1, 2017: Advances in Colloid and Interface Science
Aneta Michna
Recent studies on macroion adsorption at solid/liquid interfaces evaluated by electrokinetic and optical methods are reviewed. In the first section a description of electrokinetic phenomena at a solid surface is briefly outlined. Various methods for determining both static and dynamic properties of the electrical double layer, such as the appropriate location of the slip plane, are presented. Theoretical approaches are discussed concerning quantitative interpretation of streaming potential/current measurements of homogeneous macroscopic interfaces...
September 29, 2017: Advances in Colloid and Interface Science
Elżbieta Megiel
This article provides an overview of the methods for surface modification based on the use of stable radicals: 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and its derivatives. Two approaches are discussed. The first relies on the immobilization of TEMPO moieties on the surface of various materials including silicon wafers, silica particles, organic polymers as well as diverse nanomaterials. Applications of such materials with spin labeled surface/interface, in (electro)catalysis, synthesis of novel hybrid nanostructures and nanocomposites as well as in designing of organic magnets and novel energy storage devices are also included in the discussion...
September 20, 2017: Advances in Colloid and Interface Science
Paul Grandgeorge, Arnaud Antkowiak, Sébastien Neukirch
A flexible fiber carrying a liquid drop may coil inside the drop thereby creating a drop-on-fiber system with an ultra-extensible behavior. During compression, the excess fiber is spooled inside the droplet and capillary forces keep the system taut. During subsequent elongation, the fiber is gradually released and if a large number of spools is uncoiled a high stretchability is achieved. This mechanical behaviour is of interest for stretchable connectors but information, may it be electronic or photonic, usually travels through stiff functional materials...
September 18, 2017: Advances in Colloid and Interface Science
Andrey Shmyrov, Aleksey Mizev, Vitaly Demin, Maxim Petukhov, Dmitry Bratsun
We consider the effect of a partially contaminated interface on the steady thermocapillary flow developed in a two-dimensional slot of finite extent. The contamination is due to the presence of an insoluble surfactant which is carried away by the flow and forms a region of stagnant surface. This problem, first studied in the classical theoretical paper by Carpenter and Homsy (1985, J. Fluid Mech. 155, 429), is revisited thanks to new experimental data. We show that there is a qualitative agreement between above theory and our experiments: two different regions simultaneously coexist on the surface, one of which is free from surfactant and subject to vigorous Marangoni flow, while the other is stagnant and subject to creeping flow with the surface velocity smaller about two orders of magnitude...
September 15, 2017: Advances in Colloid and Interface Science
Bo Jiang, Jian Yang, Nahla Rahoui, Nadia Taloub, Yu Dong Huang
This review discusses the functional polymer materials effect on the cell adhesion. The applied polymer materials for the cell adhesion purpose was prepared based on organic fibers and biocompatible hydrogel. On the other hand, the active peptides are incorporated into the polymer materials substrate via the cysteine-containing peptides and N-hydroxysuccinimide-active group. Cancer cells and normal cells were presented for the selective adhesion via the introduced polymer materials substrate containing active peptides including Arginine-Glycine-Aspartic and Isoleucine-Lysine-Valine-Alanine-Valine sequence peptides...
September 14, 2017: Advances in Colloid and Interface Science
Mathilde Lepoitevin, Tianji Ma, Mikhael Bechelany, Jean-Marc Janot, Sebastien Balme
In nature, ion channels are highly selective pores and act as gate to ensure selective ion transport, allowing ions to cross the membrane. By mimicking them, single solid state nanopore devices emerge as a new, powerful class of molecule sensors that allow for the label-free detection of biomolecules (DNA, RNA, and proteins), non-biological polymers, as well as small molecules. In this review, we exhaustively describe the fabrication and functionalization techniques to design highly robust and selective solid state nanopores...
September 14, 2017: Advances in Colloid and Interface Science
Hal R Holmes, Karl F Böhringer
Anisotropic ratchet conveyors (ARC) are a type of digital microfluidic system. Unlike electrowetting based systems, ARCs transport droplets through a passive, micro-patterned surface and applied orthogonal vibrations. The mechanics of droplet transport on ARC devices has yet to be as well characterized and understood as on electrowetting systems. In this work, we investigate how the design of the ARC substrate affects the droplet response to vibrations and perform the first characterization of transport velocity on ARC devices...
September 14, 2017: Advances in Colloid and Interface Science
Mohammad Shahadat, Mohammad Zain Khan, Parveen Fatemeh Rupani, Asha Embrandiri, Saima Sultana, Shaikh Ziauddin Ahammad, S Wazed Ali, T R Sreekrishnan
Among the various electrically conducting polymers, polyaniline (PANI) has gained attentions due to its unique properties and doping chemistry. A number of electrically conducting biodegradable polymers has been synthesized by incorporating a biodegradable content of cellulose, chitin, chitosan, etc. in the matrix of PANI. The hybrid materials are also employed as photocatalysts, antibacterial agents, sensors, fuel cells and as materials in biomedical applications. Furthermore, these biodegradable and biocompatible conducting polymers are employed in tissue engineering, dental implants and targeted drug delivery...
September 6, 2017: Advances in Colloid and Interface Science
Pieter Gijsenbergh, Robert Puers
A semi-flexible polymer microtensiometer for local surface pressure measurements of Langmuir monolayers is presented. The current device geometry and read-out method via image analysis result in a theoretical accuracy of ±0.02mN⋅m(-1) for a dynamic range between 0 and 75mN⋅m(-1). The tensiometer sensitivity and dynamic range are easily tunable as they are solely based on the tensiometer spring dimensions. Finite element simulations are used to determine the response time of 20ms for a subphase viscosity of 1mPa⋅s...
September 5, 2017: Advances in Colloid and Interface Science
Kannan Badri Narayanan, Sung Soo Han
Viral nanotechnology utilizes virus nanoparticles (VNPs) and virus-like nanoparticles (VLPs) of plant viruses as highly versatile platforms for materials synthesis and molecular entrapment that can be used in the nanotechnological fields, such as in next-generation nanoelectronics, nanocatalysis, biosensing and optics, and biomedical applications, such as for targeting, therapeutic delivery, and non-invasive in vivo imaging with high specificity and selectivity. In particular, plant virus capsids provide biotemplates for the production of novel nanostructured materials with organic/inorganic moieties incorporated in a very precise and controlled manner...
August 31, 2017: Advances in Colloid and Interface Science
A Król, P Pomastowski, K Rafińska, V Railean-Plugaru, B Buszewski
Zinc oxide (ZnO), as a material with attractive properties, has attracted great interest worldwide, particularly owing to the implementation of the synthesis of nano-sized particles. High luminescent efficiency, a wide band gap (3.36eV), and a large exciton binding energy (60meV) has triggered intense research on the production of nanoparticles using different synthesis methods and on their future applications. ZnO nanomaterials can be used in industry as nano-optical and nano-electrical devices, in food packaging and in medicine as antimicrobial and antitumor agents...
August 26, 2017: Advances in Colloid and Interface Science
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"