Read by QxMD icon Read

Advances in Colloid and Interface Science

Youkun Zheng, Lanmei Lai, Weiwei Liu, Hui Jiang, Xuemei Wang
Fluorescent gold nanoclusters (AuNCs) are emerging as novel fluorescent materials and have attracted more and more attention in the field of biolabeling, biosensing, bioimaging and targeted cancer treatment because of their unusual physicochemical properties, such as long fluorescence lifetime, ultrasmall size, large Stokes shift, strong photoluminescence, as well as excellent biocompatibility and photostability. Recently, significant efforts have been committed to the preparation, functionalization and biomedical application studies of fluorescent AuNCs...
February 16, 2017: Advances in Colloid and Interface Science
Pingkeng Wu, Alex Nikolov, Darsh Wasan
Capillary dynamics is a ubiquitous everyday phenomenon. It has practical applications in diverse fields, including ink-jet printing, lab-on-a-chip, biotechnology, and coating. Understanding capillary dynamics requires essential knowledge on the molecular level of how fluid molecules interact with a solid substrate (the wall). Recent studies conducted with the surface force apparatus (SFA), atomic force microscope (AFM), and statistical mechanics simulation revealed that molecules/nanoparticles confined into the film/wall surfaces tend to self-layer into 2D layer/s and even 2D in-layer with increased confinement and fluid volume fraction...
February 10, 2017: Advances in Colloid and Interface Science
Simone Napolitano, Michele Sferrazza
Growing experimental evidence shows that the behavior of polymer chains confined at the nanoscale level strongly depends on the degree of adsorption correlated to the number density of monomers pinned onto the supporting substrate. In this contribution, after introducing the physics behind the mechanisms of irreversible adsorption, we review recent experimental observations on how adsorption affects properties of polymer melts confined in 1D, focusing on those related to the thermal glass transition, maximum water uptake, viscosity and crystallization...
February 9, 2017: Advances in Colloid and Interface Science
Miguel Angel Fernandez-Rodriguez, Bernard P Binks, Miguel Angel Rodriguez-Valverde, Miguel Angel Cabrerizo-Vilchez, Roque Hidalgo-Alvarez
Particles adsorbed at liquid interfaces are commonly used to stabilise water-oil Pickering emulsions and water-air foams. The fundamental understanding of the physics of particles adsorbed at water-air and water-oil interfaces is improving significantly due to novel techniques that enable the measurement of the contact angle of individual particles at a given interface. The case of non-aqueous interfaces and emulsions is less studied in the literature. Non-aqueous liquid-liquid interfaces in which water is replaced by other polar solvents have properties similar to those of water-oil interfaces...
February 7, 2017: Advances in Colloid and Interface Science
Randi Nordström, Martin Malmsten
Due to rapidly increasing resistance development against conventional antibiotics, finding novel approaches for the treatment of infections has emerged as a key health issue. Antimicrobial peptides (AMPs) have attracted interest in this context, and there is by now a considerable literature on the identification such peptides, as well as on their optimization to reach potent antimicrobial and anti-inflammatory effects at simultaneously low toxicity against human cells. In comparison, delivery systems for antimicrobial peptides have attracted considerably less interest...
January 25, 2017: Advances in Colloid and Interface Science
Samuel Martin, Philip S Brown, Bharat Bhushan
Nature provides inspiration for liquid-repellant and low-adhesive surfaces, such as the lotus leaf and pitcher plant. While water-repellency is frequently found in nature, oil-repellency and surfactant-repellency are uncommon to nonexistent. To obtain oil- and surfactant-repellency, hierarchical, re-entrant, bioinspired surface structures along with low surface energy materials are needed. This overview presents wetting literature, common liquids and their composition, and fabrication techniques for superliquiphobic surfaces with repellency toward water, oil, and surfactant-containing liquids...
January 23, 2017: Advances in Colloid and Interface Science
Syed Niaz Ali Shah, Jin-Ming Lin
Herein, a broad overview concerning the most recent progress of carbon dots (CDs) in chemiluminescence (CL) as well as the mechanisms and applications are presented. CDs have excellent optical and electronic properties and are very important advancement in the fast growing domain of nanotechnology. CDs enhance the ultraweak CL of different systems. The mechanisms and applications of these enhanced CL reactions are discussed. It is worthy to note that CDs participate in CL reactions as catalysts, energy acceptors or are directly involved in redox reactions with radicals in CL systems...
January 19, 2017: Advances in Colloid and Interface Science
Caroline R Szczepanski, Frédéric Guittard, Thierry Darmanin
Parahydrophobic surfaces are an interesting class of materials that combines both high contact angles and very strong adhesion with wetting fluids, most commonly water. This unique set of properties makes parahydrophobic surfaces attractive for a variety of applications, including water harvesting and collection, guided fluid transport, and membrane development, amongst many others. Taking inspiration from natural surfaces that display this same behavior such as rose petals and gecko feet, synthetic approaches aim to incorporate the nano- and micro-scale topography as well as the low surface energy chemistry found on these interfaces...
January 19, 2017: Advances in Colloid and Interface Science
R Miller, E V Aksenenko, V B Fainerman
The dynamics of surfactant interfacial layers was first discussed more than a century ago. In 1946 the most important work by Ward and Tordai was published which is still the theoretical basis of all new models to describe the time dependence of interfacial properties. In addition to the diffusion controlled adsorption mechanism, many other models have been postulated in literature, however, well performed experiments with well defined surfactant systems have shown that the diffusional transport is the main process governing the entire formation of surfactant adsorption layers...
December 24, 2016: Advances in Colloid and Interface Science
Ramanathan Nagarajan
Low molecular weight surfactants and high molecular weight block copolymers display analogous self-assembly behavior in solutions and at interfaces, generating nanoscale structures of different shapes. Understanding the link between the molecular structure of these amphiphiles and their self-assembly behavior has been the goal of theoretical studies. Despite the analogies between surfactants and block copolymers, models predicting their self-assembly behavior have evolved independent of one another, each overlooking the molecular feature considered critical to the other...
December 9, 2016: Advances in Colloid and Interface Science
Dawoud Al Mahrouqi, Jan Vinogradov, Matthew D Jackson
Despite the broad range of interest and applications, controls on calcite surface charge in aqueous solution, especially at conditions relevant to natural systems, remain poorly understood. The primary data source to understand calcite surface charge comprises measurements of zeta potential. Here we collate and review previous measurements of zeta potential on natural and artificial calcite and carbonate as a resource for future studies, compare and contrast the results of these studies to determine key controls on zeta potential and where uncertainties remain, and report new measurements of zeta potential relevant to natural subsurface systems...
February 2017: Advances in Colloid and Interface Science
Rajesh Kumar Prusty, Dinesh Kumar Rathore, Bankim Chandra Ray
The environmental durability of polymer based composites has always been a critical concern over its short- and long-term performances. The degree of environmental degradation is supposed to have different mechanisms and kinetics at the polymer/reinforcement interfaces in comparison to the bulk polymer matrix. Differential degradation could possibly attribute a stressed state in the material, especially at the interfaces. Present review is focused on the roles of reinforcing CNT on the performance of the polymeric nanocomposites in different in-service environments (the environmental parameters include temperature, moisture, UV light, low earth orbit space environment, electromagnetic waves)...
February 2017: Advances in Colloid and Interface Science
David Julian McClements
Biopolymer microgels have considerable potential for their ability to encapsulate, protect, and release bioactive components. Biopolymer microgels are small particles (typically 100nm to 1000μm) whose interior consists of a three-dimensional network of cross-linked biopolymer molecules that traps a considerable amount of solvent. This type of particle is also sometimes referred to as a nanogel, hydrogel bead, biopolymer particles, or microsphere. Biopolymer microgels are typically prepared using a two-step process involving particle formation and particle gelation...
February 2017: Advances in Colloid and Interface Science
Ravi P Pandey, Geetanjali Shukla, Murli Manohar, Vinod K Shahi
In the context of many applications, such as polymer composites, energy-related materials, sensors, 'paper'-like materials, field-effect transistors (FET), and biomedical applications, chemically modified graphene was broadly studied during the last decade, due to its excellent electrical, mechanical, and thermal properties. The presence of reactive oxygen functional groups in the grapheme oxide (GO) responsible for chemical functionalization makes it a good candidate for diversified applications. The main objectives for developing a GO based nanohybrid proton exchange membrane (PEM) include: improved self-humidification (water retention ability), reduced fuel crossover (electro-osmotic drag), improved stabilities (mechanical, thermal, and chemical), enhanced proton conductivity, and processability for the preparation of membrane-electrode assembly...
February 2017: Advances in Colloid and Interface Science
Ali Jebali, Elham Khajeh Nayeri, Sima Roohana, Shiva Aghaei, Maede Ghaffari, Karim Daliri, Garcia Fuente
Combining nanoparticles with carbohydrate has triggered an exponential growth of research activities for the design of novel functional bionanomaterials, nano-carbohydrates. Recent advances in versatile synthesis of glycosylated nanoparticles have paved the way towards diverse biomedical applications. The accessibility of a wide variety of these structured nanosystems, in terms of shape, size, and organization around stable nanoparticles, has readily contributed to their development and application in nanomedicine...
February 2017: Advances in Colloid and Interface Science
Paul Dubin, Sarah Perry, Yisheng Xu
No abstract text is available yet for this article.
January 2017: Advances in Colloid and Interface Science
Xiaoqing Liu, Jean-Paul Chapel, Christophe Schatz
While many studies on coacervation have targeted biomacromolecules, we review in this article the key structure, thermodynamic and kinetic features of a fully synthetic coacervating system based on polyacrylic acid (PAA) and poly(diallyldimethylammonium chloride) (PDADMAC) oppositely charged polyelectrolytes at pH10, where PAA chains are fully deprotonated. Among the main points of interest, we can highlight (i) the presence of polyelectrolyte complex (PEC) nanoparticles that, unexpectedly, coexist with a certain amount of coacervate droplets in a large range of compositions, even far from stoichiometry; (ii) the fact that these PEC nanoparticles are likely precursors of the coacervation occurring at stoichiometry; (iii) the formation of soluble PECs only in a certain range of physicochemical conditions; (iv) the equilibrium properties of the system; (v) and last but not least a distinctive kinetic signature at stoichiometry evidenced by a peak in light scattering at very short times (~100ms)...
January 2017: Advances in Colloid and Interface Science
Fatih Comert, Paul L Dubin
The coacervation of systems containing colloids (e.g. proteins or micelles) and polyelectrolytes (notably ionic polysaccharides) is often accompanied by precipitation. This can introduce inhomogeneity, irreversibility and irreproducible kinetics in applications in food science and bioengineering, with negative impact on texture and stability of food products, and unpredictable delivery of active "payloads." The relationship between coacervation and precipitation is obscure in that coacervates might be intermediates in the formation of precipitates, or else the two phenomena might proceed by different but possibly simultaneous mechanisms...
January 2017: Advances in Colloid and Interface Science
Yalin Liu, H Henning Winter, Sarah L Perry
Rheology is a powerful method for material characterization that can provide detailed information about the self-assembly, structure, and intermolecular interactions present in a material. Here, we review the use of linear viscoelastic measurements for the rheological characterization of complex coacervate-based materials. Complex coacervation is an electrostatically and entropically-driven associative liquid-liquid phase separation phenomenon that can result in the formation of bulk liquid phases, or the self-assembly of hierarchical, microphase separated materials...
January 2017: Advances in Colloid and Interface Science
H Monteillet, J M Kleijn, J Sprakel, F A M Leermakers
The Scheutjens-Fleer self-consistent field (SF-SCF) theory is used to study complexation between two oppositely charged polyelectrolytes across an interface formed by two solvents, here called oil and water. The focus is on the composition and the lateral stability of such interfacial coacervate. One polyelectrolyte is chosen to be oil soluble and the other one prefers water, whereas the counter and salt ions are taken to distribute ideally over all phases. There exists an electrostatic associative driving force for the formation of the coacervate phase which increases with decreasing ionic strength and may be assisted by some specific affinity between the associating units and an effective poor solvency for the coacervate...
January 2017: Advances in Colloid and Interface Science
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"