Read by QxMD icon Read

Advances in Colloid and Interface Science

Epameinondas Leontidis
From the ion point-of-view specific ion effects (SIE) arise as an interplay of ionic size and shape and charge distribution. However in aqueous systems SIE invariably involve water, and at surfaces they involve both interacting surface groups and local fields emanating from the surface. In this review we highlight the fundamental importance of ionic size and hydration on SIE, properties which encompass all types of interacting forces and ion-pairing phenomena and make the Hofmeister or lyotropic series of ions pertinent to a broad range of systems and phenomena...
April 4, 2017: Advances in Colloid and Interface Science
Lívia de Souza Simões, Daniel A Madalena, Ana C Pinheiro, José A Teixeira, António A Vicente, Óscar L Ramos
Micro- and nanoencapsulation is an emerging technology in the food field that potentially allows the improvement of food quality and human health. Bio-based delivery systems of bioactive compounds have a wide variety of morphologies that influence their stability and functional performance. The incorporation of bioactive compounds in food products using micro- and nano-delivery systems may offer extra health benefits, beyond basic nutrition, once their encapsulation may provide protection against undesired environmental conditions (e...
March 27, 2017: Advances in Colloid and Interface Science
George Kaptay
No abstract text is available yet for this article.
March 22, 2017: Advances in Colloid and Interface Science
Kai Zheng, Aldo R Boccaccini
Silicate-based bioactive glass nanoparticles (BGN) are gaining increasing attention in various biomedical applications due to their unique properties. Controlled synthesis of BGN is critical to their effective use in biomedical applications since BGN characteristics, such as morphology and composition, determining the properties of BGN, are highly related to the synthesis process. In the last decade, numerous investigations focusing on BGN synthesis have been reported. BGN can mainly be produced through the conventional melt-quench approach or by sol-gel methods...
March 21, 2017: Advances in Colloid and Interface Science
Barbara Szczęśniak, Jerzy Choma, Mietek Jaroniec
Clean energy sources and global warming are among the major challenges of the 21st century. One of the possible actions toward finding alternative energy sources and reducing global warming are storage of H2 and CH4, and capture of CO2 by using highly efficient and low-cost adsorbents. Graphene and graphene-based materials attracted a great attention around the world because of their potential for a variety applications ranging from electronics, gas sensing, energy storage and CO2 capture. Large specific surface area of these materials up to ~3000m(2)/g and versatile modification make them excellent adsorbents for diverse applications...
March 20, 2017: Advances in Colloid and Interface Science
Élodie Boisselier, Éric Demers, Line Cantin, Christian Salesse
This review presents data on the influence of various experimental parameters on the binding of proteins onto Langmuir lipid monolayers. The users of the Langmuir methodology are often unaware of the importance of choosing appropriate experimental conditions to validate the data acquired with this method. The protein Retinitis pigmentosa 2 (RP2) has been used throughout this review to illustrate the influence of these experimental parameters on the data gathered with Langmuir monolayers. The methods detailed in this review include the determination of protein binding parameters from the measurement of adsorption isotherms, infrared spectra of the protein in solution and in monolayers, ellipsometric isotherms and fluorescence micrographs...
March 18, 2017: Advances in Colloid and Interface Science
Duyang Zang, Yinkai Yu, Zhen Chen, Xiaoguang Li, Hongjing Wu, Xingguo Geng
The technique of acoustic levitation normally produces a standing wave and the potential well of the sound field can be used to trap small objects. Since no solid surface is involved it has been widely applied for the study of fluid physics, nucleation, bio/chemical processes, and various forms of soft matter. In this article, we survey the works on drop dynamics in acoustic levitation, focus on how the dynamic behavior is related to the rheological properties and discuss the possibility to develop a novel rheometer based on this technique...
March 18, 2017: Advances in Colloid and Interface Science
Jingchao Li, Shige Wang, Xiangyang Shi, Mingwu Shen
The design and development of multifunctional nanoplatforms for biomedical applications still remains to be challenging. This review reports the recent advances in aqueous-phase synthesis of iron oxide nanoparticles (Fe3O4 NPs) and their composites for magnetic resonance (MR) imaging and photothermal therapy of cancer. Water dispersible and colloidally stable Fe3O4 NPs synthesized via controlled coprecipitation route, hydrothermal route and mild reduction route are introduced. Some of key strategies to improve the r2 relaxivity of Fe3O4 NPs and to enhance their uptake by cancer cells are discussed in detail...
March 14, 2017: Advances in Colloid and Interface Science
Hanna Gustafsson, Krister Holmberg
We review the use of various types of emulsions as media for synthesis of porous silica particles. The use of high internal phase emulsions, i.e. emulsions with a high ratio of dispersed to continuous phase, is an approach that has attracted considerable attention. Polymerization of the continuous phase followed by removal of the dispersed phase leads to a material with an even distribution of pores if the emulsion droplets are uniform in size. Another route is to use particle stabilized emulsions as template...
March 11, 2017: Advances in Colloid and Interface Science
Zeinab Fereshteh, Masoud Salavati-Niasari
Thermal decomposition of organometallic and various coordination compounds are known as general method to synthesize a wide range of nanostructures including metals, metal oxides and sulfides. Herein, in order to coordinate metals and prepare suitable precursor - due to the efficient role of precursor on the particle size and morphology of products - appropriate ligands will be introduced.
March 8, 2017: Advances in Colloid and Interface Science
Sandra Böttcher, Stephan Drusch
Saponins are interfacially active ingredients in plants consisting of a hydrophobic aglycone structure with hydrophilic sugar residues. Variations in aglycone structure as well as type and amount of sugar residues occur depending on the botanical origin. Saponins are a heterogeneous and broad class of natural substances and therefore the relationship between molecular structure and interfacial properties is complex and, yet, not completely understood. A wide range of research focused either on structural elucidation of saponins or interfacial properties...
March 1, 2017: Advances in Colloid and Interface Science
Anne-Laure Fameau, Arnaud Saint-Jalmes
The most common types of liquid foams are aqueous ones, and correspond to gas bubbles dispersed in an aqueous liquid phase. Non-aqueous foams are also composed of gas bubbles, but dispersed in a non-aqueous solvent. In the literature, articles on such non-aqueous foams are scarce; however, the study of these foams has recently emerged, especially because of their potential use as low calories food products and of their increasing importance in various other industries (such as, for instance, the petroleum industry)...
February 21, 2017: Advances in Colloid and Interface Science
Youkun Zheng, Lanmei Lai, Weiwei Liu, Hui Jiang, Xuemei Wang
Fluorescent gold nanoclusters (AuNCs) are emerging as novel fluorescent materials and have attracted more and more attention in the field of biolabeling, biosensing, bioimaging and targeted cancer treatment because of their unusual physicochemical properties, such as long fluorescence lifetime, ultrasmall size, large Stokes shift, strong photoluminescence, as well as excellent biocompatibility and photostability. Recently, significant efforts have been committed to the preparation, functionalization and biomedical application studies of fluorescent AuNCs...
February 16, 2017: Advances in Colloid and Interface Science
Ignác Capek
Noble metal, especially gold nanoparticles and their conjugates with biopolymers have immense potential for disease diagnosis and therapy on account of their surface plasmon resonance (SPR) enhanced light scattering and absorption. Conjugation of noble metal nanoparticles to ligands specifically targeted to biomarkers on diseased cells allows molecular-specific imaging and detection of disease. The development of smart gold nanoparticles (AuNPs) that can deliver therapeutics at a sustained rate directly to cancer cells may provide better efficacy and lower toxicity for treating cancer tumors...
February 15, 2017: Advances in Colloid and Interface Science
Pingkeng Wu, Alex Nikolov, Darsh Wasan
Capillary dynamics is a ubiquitous everyday phenomenon. It has practical applications in diverse fields, including ink-jet printing, lab-on-a-chip, biotechnology, and coating. Understanding capillary dynamics requires essential knowledge on the molecular level of how fluid molecules interact with a solid substrate (the wall). Recent studies conducted with the surface force apparatus (SFA), atomic force microscope (AFM), and statistical mechanics simulation revealed that molecules/nanoparticles confined into the film/wall surfaces tend to self-layer into 2D layer/s and even 2D in-layer with increased confinement and fluid volume fraction...
February 10, 2017: Advances in Colloid and Interface Science
Simone Napolitano, Michele Sferrazza
Growing experimental evidence shows that the behavior of polymer chains confined at the nanoscale level strongly depends on the degree of adsorption correlated to the number density of monomers pinned onto the supporting substrate. In this contribution, after introducing the physics behind the mechanisms of irreversible adsorption, we review recent experimental observations on how adsorption affects properties of polymer melts confined in 1D, focusing on those related to the thermal glass transition, maximum water uptake, viscosity and crystallization...
February 9, 2017: Advances in Colloid and Interface Science
Cosima Stubenrauch, Martin Hamann, Natalie Preisig, Vinay Chauhan, Romain Bordes
Do intermolecular H-bonds between surfactant head groups play a role for foam stability? From the literature on the foam stability of various surfactants with C12 alkyl chains but different head groups a clear picture emerges: stable foams are only generated when hydrogen bonds can form between the head groups, i.e. when the polar head group has a hydrogen bond donor and a proton acceptor. Stable foams can therefore be generated with surfactants having a sugar unit, a glycine, an amine oxide (at pH~5), or a carboxylic acid (at pH~pKa) as polar head group...
February 8, 2017: Advances in Colloid and Interface Science
Miguel Angel Fernandez-Rodriguez, Bernard P Binks, Miguel Angel Rodriguez-Valverde, Miguel Angel Cabrerizo-Vilchez, Roque Hidalgo-Alvarez
Particles adsorbed at liquid interfaces are commonly used to stabilise water-oil Pickering emulsions and water-air foams. The fundamental understanding of the physics of particles adsorbed at water-air and water-oil interfaces is improving significantly due to novel techniques that enable the measurement of the contact angle of individual particles at a given interface. The case of non-aqueous interfaces and emulsions is less studied in the literature. Non-aqueous liquid-liquid interfaces in which water is replaced by other polar solvents have properties similar to those of water-oil interfaces...
February 7, 2017: Advances in Colloid and Interface Science
Emmanuelle Rio, François Boulogne
A solid withdrawn from a liquid bath entrains a film. In this review, after recalling the predictions and results for pure Newtonian liquids coated on simple solids, we analyze the deviations to this ideal case exploring successively three potential sources of complexity: the liquid-air interface, the bulk rheological properties of the liquid and the mechanical or chemical properties of the solid. For these different complexities, we show that significant effects on the film thickness are observed experimentally and we summarize the theoretical analysis presented in the literature, which attempt to rationalize these measurements...
February 4, 2017: Advances in Colloid and Interface Science
Randi Nordström, Martin Malmsten
Due to rapidly increasing resistance development against conventional antibiotics, finding novel approaches for the treatment of infections has emerged as a key health issue. Antimicrobial peptides (AMPs) have attracted interest in this context, and there is by now a considerable literature on the identification such peptides, as well as on their optimization to reach potent antimicrobial and anti-inflammatory effects at simultaneously low toxicity against human cells. In comparison, delivery systems for antimicrobial peptides have attracted considerably less interest...
January 25, 2017: Advances in Colloid and Interface Science
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"