Read by QxMD icon Read

Advances in Colloid and Interface Science

Longhua Xu, Jia Tian, Houqin Wu, Shuai Fang, Zhongyuan Lu, Caifeng Ma, Wei Sun, Yuehua Hu
Anisotropic surface properties of minerals play an important role in a variety of fields. With a focus on the two most intensively investigated silicate minerals (i.e., phyllosilicate minerals and pegmatite aluminosilicate minerals), this review highlights the research on their anisotropic surface properties based on their crystal structures. Four surface features comprise the anisotropic surface chemistry of minerals: broken bonds, energy, wettability, and charge. Analysis of surface broken bond and energy anisotropy helps to explain the cleavage and growth properties of mineral crystals, and understanding surface wettability and charge anisotropy is critical to the analysis of minerals' solution behavior, such as their flotation performance and rheological properties...
March 7, 2018: Advances in Colloid and Interface Science
Beata Bajorowicz, Marek P Kobylański, Anna Gołąbiewska, Joanna Nadolna, Adriana Zaleska-Medynska, Anna Malankowska
Quantum dot (QD)-decorated semiconductor micro- and nanoparticles are a new class of functional nanomaterials that have attracted considerable interest for their unique structural, optical and electronic properties that result from the large surface-to-volume ratio and the quantum confinement effect. In addition, because of QDs' excellent light-harvesting capacity, unique photoinduced electron transfer, and up-conversion behaviour, semiconductor nanoparticles decorated with quantum dots have been used widely in photocatalytic applications for the degradation of organic pollutants in both the gas and aqueous phases...
February 20, 2018: Advances in Colloid and Interface Science
David Julian McClements
There are many examples of bioactive proteins and peptides that would benefit from oral delivery through functional foods, supplements, or medical foods, including hormones, enzymes, antimicrobials, vaccines, and ACE inhibitors. However, many of these bioactive proteins are highly susceptible to denaturation, aggregation or hydrolysis within commercial products or inside the human gastrointestinal tract (GIT). Moreover, many bioactive proteins have poor absorption characteristics within the GIT. Colloidal systems, which contain nanoparticles or microparticles, can be designed to encapsulate, retain, protect, and deliver bioactive proteins...
February 16, 2018: Advances in Colloid and Interface Science
Bhupinder Kapoor, Reena Gupta, Sachin Kumar Singh, Monica Gulati, Saranjit Singh
With the advent from the laboratory bench to patient bedside in last five decades, vesicular systems have now come to be widely accepted as pragmatic means for controlled delivery of drugs. Their success stories include those of liposomes, niosomes and even the lately developed ethosomes and transferosomes. Pharmacosomes, which, as delivery systems offer numerous advantages and have been widely researched, however, remain largely unacknowledged as a successful delivery system. Though a large number of drugs have been derivatized and formulated into self-assembled vesicular systems, the term pharmacosomes has not been widely used while reporting them...
February 7, 2018: Advances in Colloid and Interface Science
S M Kuzmin, S A Chulovskaya, V I Parfenyuk
This review is devoted to porphyrin-based film materials. Various technological and scientific applications of ones are close to surface and interface related phenomena. In the part I of review the following topics are discussed the recent progress in field of submonolayers, monolayers and multilayers films on the vapor-solid interfaces, including results on (i) conformational behavior of adsorbed molecules, (ii) aggregation and surface phases formation, (iii) on-surface coordination networks, and (iv) on-surface chemical reactions...
February 6, 2018: Advances in Colloid and Interface Science
Jarl B Rosenholm
The perfect gas law is used as a reference when selecting state variables (P, V, T, n) needed to characterize ideal gases (vapors), liquids and solids. Van der Waals equation of state is used as a reference for models characterizing interactions in liquids, solids and their mixtures. Van der Waals loop introduces meta- and unstable states between the observed gas (vapor)-liquid P-V transitions at low T. These intermediate states are shown to appear also between liquid-liquid, liquid-solid and solid-solid phase transitions...
February 5, 2018: Advances in Colloid and Interface Science
Hong Li, Yi Jia, Haonan Peng, Junbai Li
Dopamine-based materials are emerging as novel biomaterials and have attracted considerable interests in the fields of biosensing, bioimaging and cancer therapy due to their unique physicochemical properties, such as versatile adhesion property, high chemical reactivity, excellent biocompatibility and biodegradability, strong photothermal conversion capacity, etc. In this review, we present an overview of recent research progress on dopamine-based materials for diagnosis and therapy of cancer. The review starts with a summary of the physicochemical properties of dopamine-based materials in general...
January 29, 2018: Advances in Colloid and Interface Science
Dileep Mampallil, Huseyin Burak Eral
Evaporation of sessile droplets containing non-volatile solutes dispersed in a volatile solvent leaves behind ring-like solid stains. As the volatile species evaporates, pinning of the contact line gives rise to capillary flows that transport non-volatile solutes to the contact line. This phenomenon, called the coffee-ring effect, compromises the overall performance of industrially relevant manufacturing processes involving evaporation such as printing, biochemical analysis, manufacturing of nano-structured materials through colloidal and macromolecular patterning...
January 2, 2018: Advances in Colloid and Interface Science
Stefan Iglauer, Maxim Lebedev
Physical, chemical and mechanical pore-scale (i.e. micrometer-scale) mechanisms in rock are of key importance in many, if not all, subsurface processes. These processes are highly relevant in various applications, e.g. hydrocarbon recovery, CO2 geo-sequestration, geophysical exploration, water production, geothermal energy production, or the prediction of the location of valuable hydrothermal deposits. Typical examples are multi-phase flow (e.g. oil and water) displacements driven by buoyancy, viscous or capillary forces, mineral-fluid interactions (e...
December 28, 2017: Advances in Colloid and Interface Science
Bastien Demouveaux, Valérie Gouyer, Frédéric Gottrand, Tetsuharu Narita, Jean-Luc Desseyn
Mucus is a hydrogel that constitutes the first innate defense in all mammals. The main organic component of mucus, gel-forming mucins, forms a complex network through both reversible and irreversible interactions that drive mucus gel formation. Significant advances in the understanding of irreversible gel-forming mucins assembly have been made using recombinant protein approaches. However, little is known about the reversible interactions that may finely modulate mucus viscoelasticity, which can be characterized using rheology...
December 28, 2017: Advances in Colloid and Interface Science
Defu Zhi, Yuchao Bai, Jian Yang, Shaohui Cui, Yinan Zhao, Huiying Chen, Shubiao Zhang
Cationic lipids have become known as one of the most versatile tools for the delivery of DNA, RNA and many other therapeutic molecules, and are especially attractive because they can be easily designed, synthesized and characterized. Most of cationic lipids share the common structure of cationic head groups and hydrophobic portions with linker bonds between both domains. The linker bond is an important determinant of the chemical stability and biodegradability of cationic lipid, and further governs its transfection efficiency and cytotoxicity...
December 26, 2017: Advances in Colloid and Interface Science
Min Wook Lee, Seongpil An, Sam S Yoon, Alexander L Yarin
Here, we review the state-of-the-art in the field of engineered self-healing materials. These materials mimic the functionalities of various natural materials found in the human body (e.g., the healing of skin and bones by the vascular system). The fabrication methods used to produce these "vascular-system-like" engineered self-healing materials, such as electrospinning (including co-electrospinning and emulsion spinning) and solution blowing (including coaxial solution blowing and emulsion blowing) are discussed in detail...
December 24, 2017: Advances in Colloid and Interface Science
Nicholas Lin, Paula Berton, Christopher Moraes, Robin D Rogers, Nathalie Tufenkji
Over the past ten years, a next-generation approach to combat bacterial contamination has emerged: one which employs nanostructure geometry to deliver lethal mechanical forces causing bacterial cell death. In this review, we first discuss advances in both colloidal and topographical nanostructures shown to exhibit such "mechano-bactericidal" mechanisms of action. Next, we highlight work from pioneering research groups in this area of antibacterials. Finally, we provide suggestions for unexplored research topics that would benefit the field of mechano-bactericidal nanostructures...
December 24, 2017: Advances in Colloid and Interface Science
Ryan van Dommelen, Paola Fanzio, Luigi Sasso
The controlled patterning of polymeric surfaces at the micro- and nanoscale offers potential in the technological development of small-scale devices, particularly within the fields of photovoltaics, micro-optics and lab- and organ-on-chip, where the topological arrangement of the surface can influence a system's power generation, optical properties or biological function - such as, in the latter case, biomimicking surfaces or topological control of cellular differentiation. One of the most promising approaches in reducing manufacturing costs and complexity is by exploitation of the self-assembling properties of colloidal particles...
January 2018: Advances in Colloid and Interface Science
Krassimir D Danov, Mihail T Georgiev, Peter A Kralchevsky, Gergana M Radulova, Theodor D Gurkov, Simeon D Stoyanov, Eddie G Pelan
Suspensions of colloid particles possess the remarkable property to solidify upon the addition of minimal amount of a second liquid that preferentially wets the particles. The hardening is due to the formation of capillary bridges (pendular rings), which connect the particles. Here, we review works on the mechanical properties of such suspensions and related works on the capillary-bridge force, and present new rheological data for the weakly studied concentration range 30-55 vol% particles. The mechanical strength of the solidified capillary suspensions, characterized by the yield stress Y, is measured at the elastic limit for various volume fractions of the particles and the preferentially wetting liquid...
January 2018: Advances in Colloid and Interface Science
J Lützenkirchen, G V Franks, M Plaschke, R Zimmermann, F Heberling, A Abdelmonem, G K Darbha, D Schild, A Filby, P Eng, J G Catalano, J Rosenqvist, T Preocanin, T Aytug, D Zhang, Y Gan, B Braunschweig
A wide range of isoelectric points (IEPs) has been reported in the literature for sapphire-c (α-alumina), also referred to as basal plane, (001) or (0001), single crystals. Interestingly, the available data suggest that the variation of IEPs is comparable to the range of IEPs encountered for particles, although single crystals should be much better defined in terms of surface structure. One explanation for the range of IEPs might be the obvious danger of contaminating the small surface areas of single crystal samples while exposing them to comparatively large solution reservoirs...
December 13, 2017: Advances in Colloid and Interface Science
David Julian McClements, Seid Mahdi Jafari
The formation, stability, and performance of oil-in-water emulsions may be improved by using combinations of two or more different emulsifiers, rather than an individual type. This article provides a review of the physicochemical basis for the ability of mixed emulsifiers to enhance emulsion properties. Initially, an overview of the most important physicochemical properties of emulsifiers is given, and then the nature of emulsifier interactions in solution and at interfaces is discussed. The impact of using mixed emulsifiers on the formation and stability of emulsions is then reviewed...
December 9, 2017: Advances in Colloid and Interface Science
Palash V Acharya, Vaibhav Bahadur
This article reviews the fundamental interfacial mechanisms underlying electrofreezing (promotion of ice nucleation via the application of an electric field). Electrofreezing has been an active research topic for many decades, with applications in food preservation, cryopreservation, cryogenics and ice formation. There is substantial literature detailing experimental and simulations-based studies, which aim to understand the complex mechanisms underlying accelerated ice nucleation in the presence of electric fields and electrical charge...
December 8, 2017: Advances in Colloid and Interface Science
Joseph S D'Arrigo
Due to the complexity of Alzheimer's disease, multiple cellular types need to be targeted simultaneously in order for a given therapy to demonstrate any major effectiveness. Ultrasound-sensitive coated microbubbles (in a targeted lipid nanoemulsion) are available. Versatile small molecule drug(s) targeting multiple pathways of Alzheimer's disease pathogenesis are known. By incorporating such drug(s) into the targeted "lipid-coated microbubble" [LCM]/"nanoparticle-derived" [ND] (or LCM/ND) nanoemulsion type, one obtains a multitasking combination therapeutic for translational medicine...
December 8, 2017: Advances in Colloid and Interface Science
Longhua Xu, Jia Tian, Houqin Wu, Zhongyuan Lu, Wei Sun, Yuehua Hu
The analysis of flotation and adsorption of mixed collectors on oxide and silicate minerals is of great importance for both industrial applications and theoretical research. Over the past years, significant progress has been achieved in understanding the adsorption of single collectors in micelles as well as at interfaces. By contrast, the self-assembly of mixed collectors at liquid/air and solid/liquid interfaces remains a developing area as a result of the complexity of the mixed systems involved and the limited availability of suitable analytical techniques...
December 2017: Advances in Colloid and Interface Science
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"