Read by QxMD icon Read

Journal of Biological Rhythms

Casey O Diekman, Amitabha Bose
Circadian oscillators found across a variety of species are subject to periodic external light-dark forcing. Entrainment to light-dark cycles enables the circadian system to align biological functions with appropriate times of day or night. Phase response curves (PRCs) have been used for decades to gain valuable insights into entrainment; however, PRCs may not accurately describe entrainment to photoperiods with substantial amounts of both light and dark due to their reliance on a single limit cycle attractor...
October 17, 2016: Journal of Biological Rhythms
Lenka Pivarciova, Hanka Vaneckova, Jan Provaznik, Bulah Chia-Hsiang Wu, Martin Pivarci, Olga Peckova, Olga Bazalova, Stepan Cada, Petr Kment, Joanna Kotwica-Rolinska, David Dolezel
Circadian clocks keep organisms in synchrony with external day-night cycles. The free running period (FRP) of the clock, however, is usually only close to-not exactly-24 h. Here, we explored the geographical variation in the FRP of the linden bug, Pyrrhocoris apterus, in 59 field-lines originating from a wide variety of localities representing geographically different environments. We have identified a remarkable range in the FRPs between field-lines, with the fastest clock at ~21 h and the slowest close to 28 h, a range comparable to the collections of clock mutants in model organisms...
October 5, 2016: Journal of Biological Rhythms
Jacob J Hughey, Atul J Butte
The daily timing of mammalian physiology is coordinated by circadian clocks throughout the body. Although measurements of clock gene expression indicate that these clocks in mice are normally in phase with each other, the situation in humans remains unclear. We used publicly available data from five studies, comprising over 1000 samples, to compare the phasing of circadian gene expression in human brain and human blood. Surprisingly, after controlling for age, clock gene expression in brain was phase-delayed by ~8...
October 4, 2016: Journal of Biological Rhythms
David S Garbe, Abigail S Vigderman, Emilia Moscato, Abigail E Dove, Christopher G Vecsey, Matthew S Kayser, Amita Sehgal
Female Drosophila melanogaster, like many other organisms, exhibit different behavioral repertoires after mating with a male. These postmating responses (PMRs) include increased egg production and laying, increased rejection behavior (avoiding further male advances), decreased longevity, altered gustation and decreased sleep. Sex Peptide (SP), a protein transferred from the male during copulation, is largely responsible for many of these behavioral responses, and acts through a specific circuit to induce rejection behavior and alter dietary preference...
September 22, 2016: Journal of Biological Rhythms
Isa Kolbe, Jana Husse, Gabriela Salinas, Thomas Lingner, Mariana Astiz, Henrik Oster
The circadian master pacemaker in the suprachiasmatic nucleus (SCN) orchestrates peripheral clocks in various organs and synchronizes them with external time, including those in adipose tissue, which displays circadian oscillations in various metabolic and endocrine outputs. Because our knowledge about the instructive role of the SCN clock on peripheral tissue function is based mainly on SCN lesion studies, we here used an alternative strategy employing the Cre/loxP system to functionally delete the SCN clock in mice...
September 20, 2016: Journal of Biological Rhythms
Nicholas J C Tyler, Pablo Gregorini, Mads C Forchhammer, Karl-Arne Stokkan, Bob E H van Oort, David G Hazlerigg
Occurrence of 24-h rhythms in species apparently lacking functional molecular clockwork indicates that strong circadian mechanisms are not essential prerequisites of robust timing, and that rhythmical patterns may arise instead as passive responses to periodically changing environmental stimuli. Thus, in a new synthesis of grazing in a ruminant (MINDY), crepuscular peaks of activity emerge from interactions between internal and external stimuli that influence motivation to feed, and the influence of the light/dark cycle is mediated through the effect of low nocturnal levels of food intake on gastric function...
October 2016: Journal of Biological Rhythms
Nan Yang, Qing-Jun Meng
Temporally coordinated resorption and synthesis is the key to maintaining healthy bones. Articular cartilage is a highly specialized connective tissue within the joints that lines the surface of a long bone. Emerging evidence has suggested a critical role of the circadian system in controlling cartilage and bone biology. Articular cartilage is sparsely populated with chondrocytes, surrounded by abundant extracellular matrices that are synthesized and maintained solely by chondrocytes. Once damaged, the articular cartilage tissue has poor capacity for endogenous repair, leaving the joints prone to osteoarthritis, an age-related painful condition that affects millions of individuals worldwide...
October 2016: Journal of Biological Rhythms
Ahuva Y Segal, Tracey L Sletten, Erin E Flynn-Evans, Steven W Lockley, Shantha M W Rajaratnam
While previous studies have demonstrated short-wavelength sensitivity to the acute alerting effects of light during the biological night, fewer studies have assessed the alerting effect of light during the daytime. This study assessed the wavelength-dependent sensitivity of the acute alerting effects of daytime light exposure following chronic sleep restriction in 60 young adults (29 men, 31 women; 22.5 ± 3.1 mean ± SD years). Participants were restricted to 5 h time in bed the night before laboratory admission and 3 h time in bed in the laboratory, aligned by wake time...
October 2016: Journal of Biological Rhythms
Julia Karagicheva, Eldar Rakhimberdiev, Anne Dekinga, Maarten Brugge, Anita Koolhaas, Job Ten Horn, Theunis Piersma
Because of the complications in achieving the necessary long-term observations and experiments, the nature and adaptive value of seasonal time-keeping mechanisms in long-lived organisms remain understudied. Here we present the results of a 20-year-long study of the repeated seasonal changes in body mass, plumage state, and primary molt of 45 captive red knots Calidris canutus islandica, a High Arctic breeding shorebird that spends the nonbreeding season in temperate coastal areas. Birds kept outdoors and experiencing the natural photoperiod of the nonbreeding area maintained sequences of life-cycle stages, roughly following the timing in nature...
October 2016: Journal of Biological Rhythms
Lara G Sigurdardottir, Sarah C Markt, Sigurdur Sigurdsson, Thor Aspelund, Katja Fall, Eva Schernhammer, Jennifer R Rider, Lenore Launer, Tamara Harris, Meir J Stampfer, Vilmundur Gudnason, Charles A Czeisler, Steven W Lockley, Unnur A Valdimarsdottir, Lorelei A Mucci
The pineal gland produces the hormone melatonin, and its volume may influence melatonin levels. We describe an innovative method for estimating pineal volume in humans and present the association of pineal parenchyma volume with levels of the primary melatonin metabolite, 6-sulfatoxymelatonin. We selected a random sample of 122 older Icelandic men nested within the AGES-Reykjavik cohort and measured their total pineal volume, their parenchyma volume, and the extent of calcification and cysts. For volume estimations we used manual segmentation of magnetic resonance images in the axial plane with simultaneous side-by-side view of the sagittal and coronal plane...
October 2016: Journal of Biological Rhythms
Moniek Geerdink, Thijs J Walbeek, Domien G M Beersma, Vanja Hommes, Marijke C M Gordijn
Many people in our modern civilized society sleep later on free days compared to work days. This discrepancy in sleep timing will lead to so-called 'social jetlag' on work days with negative consequences for performance and health. Light therapy in the morning is often proposed as the most effective method to advance the circadian rhythm and sleep phase. However, most studies focus on direct effects on the circadian system and not on posttreatment effects on sleep phase and sleep integrity. In this placebo-controlled home study we investigated if blue light, rather than amber light therapy, can phase shift the sleep phase along with the circadian rhythm with preservation of sleep integrity and performance...
October 2016: Journal of Biological Rhythms
Tiffany Fleet, Erin Stashi, Bokai Zhu, Kimal Rajapakshe, Kathrina L Marcelo, Nicole M Kettner, Blythe K Gorman, Cristian Coarfa, Loning Fu, Bert W O'Malley, Brian York
Circadian rhythmicity is a fundamental process that synchronizes behavioral cues with metabolic homeostasis. Disruption of daily cycles due to jet lag or shift work results in severe physiological consequences including advanced aging, metabolic syndrome, and even cancer. Our understanding of the molecular clock, which is regulated by intricate positive feedforward and negative feedback loops, has expanded to include an important metabolic transcriptional coregulator, Steroid Receptor Coactivator-2 (SRC-2), that regulates both the central clock of the suprachiasmatic nucleus (SCN) and peripheral clocks including the liver...
October 2016: Journal of Biological Rhythms
Svetlana Postnova, Steven W Lockley, Peter A Robinson
An improvement to our current quantitative model of arousal state dynamics is presented that more accurately predicts sleep propensity as measured with sleep dynamics depending on circadian phase and prior wakefulness. A nonlinear relationship between the circadian variables within the dynamic circadian oscillator model is introduced to account for the skewed shape of the circadian rhythm of alertness that peaks just prior to the onset of the biological night (the "wake maintenance zone") and has a minimum toward the end of the biological night...
October 2016: Journal of Biological Rhythms
Saskia Eck, Charlotte Helfrich-Förster, Dirk Rieger
Phase response curves (PRCs) for light or temperature stimuli have been shown to be most valuable in understanding how circadian clocks are entrained to daily environmental cycles. Nowadays, PRC experiments in which clock neurons are manipulated in a temporally restricted manner by thermogenetic or optogenetic tools are also useful to comprehend clock network properties. Here, we temporally depolarized specific clock neurons of Drosophila melanogaster by activating temperature-sensitive dTrpA1 channels to unravel their role in phase shifting the flies' activity rhythm...
October 2016: Journal of Biological Rhythms
Mark Perelis, Kathryn Moynihan Ramsey, Biliana Marcheva, Joseph Bass
The mammalian circadian clock plays a central role in the temporal coordination of physiology across the 24-h light-dark cycle. A major function of the clock is to maintain energy constancy in anticipation of alternating periods of fasting and feeding that correspond with sleep and wakefulness. While it has long been recognized that humans exhibit robust variation in glucose tolerance and insulin sensitivity across the sleep-wake cycle, experimental genetic analysis has now revealed that the clock transcription cycle plays an essential role in insulin secretion and metabolic function within pancreatic beta cells...
August 2016: Journal of Biological Rhythms
Nicola L Barclay, Richard Rowe, Rachael O'Leary, Danielle Bream, Alice M Gregory
Overlapping genetic influences have been implicated in diurnal preference and subjective sleep quality. Our overall aim was to examine overlapping concurrent and longitudinal genetic and environmental effects on diurnal preference and sleep quality over ~5 years. Behavioral genetic analyses were performed on data from the longitudinal British G1219 study of young adult twins and nontwin siblings. A total of 1556 twins and siblings provided data on diurnal preference (Morningness-Eveningness Questionnaire) and sleep quality (Pittsburgh Sleep Quality Index) at time 1 (mean age = 20...
August 2016: Journal of Biological Rhythms
Robert Y Moore
The hypothalamic suprachiasmatic nucleus (SCN), a circadian pacemaker, is present in all mammalian brains. It has a complex organization of peptide-containing neurons that is similar among species, but calcium-binding proteins are expressed variably. Neurons containing calretinin have been described in the SCN in a number of species but not with association to circadian function. The objective of the present study is to characterize a calretinin neuron (CAR) group in the rat anterior hypothalamus anatomically and functionally with a detailed description of its location and a quantitative analysis of neuronal calretinin immunoreactivity at 3 times of day, 0600, 1400, and 1900 h, from animals in either light-dark or constant dark conditions...
August 2016: Journal of Biological Rhythms
Gorica Micic, Nicole Lovato, Michael Gradisar, Helen J Burgess, Sally A Ferguson, Leon Lack
Our objectives were to investigate the period lengths (i.e., taus) of the endogenous core body temperature rhythm and melatonin rhythm in delayed sleep-wake phase disorder patients (DSWPD) and non-24-h sleep-wake rhythm disorder patients (N24SWD) compared with normally entrained individuals. Circadian rhythms were measured during an 80-h ultradian modified constant routine consisting of 80 ultrashort 1-h "days" in which participants had 20-min sleep opportunities alternating with 40 min of enforced wakefulness...
August 2016: Journal of Biological Rhythms
Logan Roberts, Tanya L Leise, David K Welsh, Todd C Holmes
Light is the primary signal that calibrates circadian neural circuits and thus coordinates daily physiological and behavioral rhythms with solar entrainment cues. Drosophila and mammalian circadian circuits consist of diverse populations of cellular oscillators that exhibit a wide range of dynamic light responses, periods, phases, and degrees of synchrony. How heterogeneous circadian circuits can generate robust physiological rhythms while remaining flexible enough to respond to synchronizing stimuli has long remained enigmatic...
August 2016: Journal of Biological Rhythms
Joshua G Davimes, Abdulaziz N Alagaili, Nadine Gravett, Mads F Bertelsen, Osama B Mohammed, Khairy Ismail, Nigel C Bennett, Paul R Manger
The Arabian oryx inhabits an environment where summer ambient temperatures can exceed 40 °C for extended periods of time. While the oryx uses a suite of adaptations that aid survival, the effects of this extreme environment on inactivity are unknown. To determine how the oryx manages inactivity seasonally, we measured the daily rhythm of body temperature and used fine-grain actigraphy, in 10 animals, to reveal when the animals were inactive in relation to ambient temperature and photoperiod. We demonstrate that during the cooler winter months, the oryx was inactive during the cooler parts of the 24-h day (predawn hours), showing a nighttime (nocturnal) inactivity pattern...
August 2016: Journal of Biological Rhythms
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"