Read by QxMD icon Read

Origins of Life and Evolution of the Biosphere

Arsev Umur Aydinoglu, Zehra Taşkın
This study explores the collaborative nature and interdisciplinarity of the origin(s) of life (OoL) research community. Although OoL research is one of the oldest topics in philosophy, religion, and science; to date there has been no review of the field utilizing bibliometric measures. A dataset of 5647 publications that are tagged as OoL, astrobiology, exobiology, and prebiotic chemistry is analyzed. The most prolific authors (Raulin, Ehrenfreund, McKay, Cleaves, Cockell, Lazcano, etc.), most cited scholars and their articles (Miller 1953, Gilbert 1986, Chyba & Sagan 1992, Wȁchtershȁuser 1988, etc...
July 13, 2017: Origins of Life and Evolution of the Biosphere
Thuc N Doan, Akimasa Fujihara
In order to investigate chemical evolution in interstellar molecular clouds, enantiomer-selective photo-induced chemical reactions between an amino acid and disaccharides in the gas phase were examined using a tandem mass spectrometer containing an electrospray ionization source and a cold ion trap. Ultraviolet photodissociation mass spectra of cold gas-phase noncovalent complexes of protonated tryptophan (Trp) enantiomers with disaccharides consisting of two D-glucose units, such as D-maltose or D-cellobiose, were obtained by photoexcitation of the indole ring of Trp...
July 8, 2017: Origins of Life and Evolution of the Biosphere
Marjorie D Cantine, Gregory P Fournier
Extensive fundamental molecular and biological evolution took place between the prebiotic origins of life and the state of the Last Universal Common Ancestor (LUCA). Considering the evolutionary innovations between these two endpoints from the perspective of environmental adaptation, we explore the hypothesis that LUCA was temporally, spatially, and environmentally distinct from life's earliest origins in an RNA world. Using this lens, we interpret several molecular biological features as indicating an environmental transition between a cold, radiation-shielded origin of life and a mesophilic, surface-dwelling LUCA...
July 6, 2017: Origins of Life and Evolution of the Biosphere
Alan W Schwartz
No abstract text is available yet for this article.
July 3, 2017: Origins of Life and Evolution of the Biosphere
Gabriel S Zamudio, Marco V José
The decipherment of the tRNA's operational code, known as the identity problem, requires the location of the sites in the tRNA structure that are involved in their correct recognition by the corresponding aminoacyl-tRNA synthetase. In this work, we determine the identity elements of each tRNA isoacceptor by means of the variation of information measure from information theory. We show that all isoacceptors exhibit sites associated with some bases of the anticodon. These sites form clusters that are scattered along the tRNA structure...
June 28, 2017: Origins of Life and Evolution of the Biosphere
Paola Di Donato, Ida Romano, Vincenza Mastascusa, Annarita Poli, Pierangelo Orlando, Mariagabriella Pugliese, Barbara Nicolaus
Astrobiology studies the origin and evolution of life on Earth and in the universe. According to the panspermia theory, life on Earth could have emerged from bacterial species transported by meteorites, that were able to adapt and proliferate on our planet. Therefore, the study of extremophiles, i.e. bacterial species able to live in extreme terrestrial environments, can be relevant to Astrobiology studies. In this work we described the ability of the thermophilic species Geobacillus thermantarcticus to survive after exposition to simulated spatial conditions including temperature's variation, desiccation, X-rays and UVC irradiation...
June 8, 2017: Origins of Life and Evolution of the Biosphere
Yoshihiro Furukawa, Atsushi Takase, Toshimori Sekine, Takeshi Kakegawa, Takamichi Kobayashi
Homochirality plays an important role in all living organisms but its origin remains unclear. It also remains unclear whether such chiral molecules survived terrestrial heavy impact events. Impacts of extraterrestrial objects on early oceans were frequent and could have affected the chirality of oceanic amino acids when such amino acids accumulated during impacts. This study investigated the effects of shock-induced heating on enantiomeric change of valine with minerals such as olivine ([Mg0.9, Fe0.1]2SiO4), hematite (Fe2O3), and calcite (CaCO3)...
May 9, 2017: Origins of Life and Evolution of the Biosphere
Mohammad P Jamshidi, Melissa J MacDonald, André M Beauchemin
The low concentration issue is a fundamental challenge when it comes to prebiotic chemistry, as macromolecular systems need to be assembled via intermolecular reactions, and this is inherently difficult in dilute solutions. This is especially true when the reactions are challenging, and reactions that proceeded more rapidly could have dictated chemical evolution. Herein we establish that formaldehyde is capable of catalyzing, via temporary intramolecularity, a challenging reaction in water at low concentrations, thus providing an alternative to other approaches that can either lead to higher concentrations or higher effective molarities...
May 4, 2017: Origins of Life and Evolution of the Biosphere
Nicolle E B Zellner
If properly interpreted, the impact record of the Moon, Earth's nearest neighbour, can be used to gain insights into how the Earth has been influenced by impacting events since its formation ~4.5 billion years (Ga) ago. However, the nature and timing of the lunar impactors - and indeed the lunar impact record itself - are not well understood. Of particular interest are the ages of lunar impact basins and what they tell us about the proposed "lunar cataclysm" and/or the late heavy bombardment (LHB), and how this impact episode may have affected early life on Earth or other planets...
May 3, 2017: Origins of Life and Evolution of the Biosphere
Rui Huang, Yoshihiro Furukawa, Tsubasa Otake, Takeshi Kakegawa
The abiotic oligomerization of amino acids may have created primordial, protein-like biological catalysts on the early Earth. Previous studies have proposed and evaluated the potential of diagenesis for the amino acid oligomerization, simulating the formation of peptides that include glycine, alanine, and valine, separately. However, whether such conditions can promote the formation of peptides composed of multiple amino acids remains unclear. Furthermore, the chemistry of pore water in sediments should affect the oligomerization and degradation of amino acids and oligomers, but these effects have not been studied extensively...
June 2017: Origins of Life and Evolution of the Biosphere
Norio Kitadai, Hiroyuki Oonishi, Koichiro Umemoto, Tomohiro Usui, Keisuke Fukushi, Satoru Nakashima
It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures...
June 2017: Origins of Life and Evolution of the Biosphere
Luc van Heereveld, Jonathan Merrison, Per Nørnberg, Kai Finster
The increasing number of missions to Mars also increases the risk of forward contamination. Consequently there is a need for effective protocols to ensure efficient protection of the Martian environment against terrestrial microbiota. Despite the fact of constructing sophisticated clean rooms for spacecraft assembly a 100 % avoidance of contamination appears to be impossible. Recent surveys of these facilities have identified a significant number of microbes belonging to a variety of taxonomic groups that survive the harsh conditions of clean rooms...
June 2017: Origins of Life and Evolution of the Biosphere
Alan W Schwartz
No abstract text is available yet for this article.
June 2017: Origins of Life and Evolution of the Biosphere
Akimasa Fujihara, Hiroki Matsuyama, Michiko Tajiri, Yoshinao Wada, Shigeo Hayakawa
Enantioselective dissociation in the gas phase is important for enantiomeric enrichment and chiral transmission processes in molecular clouds regarding the origin of homochirality in biomolecules. Enantioselective collision-activated dissociation (CAD) of tryptophan (Trp) and the chiral recognition ability of L-alanine peptides (L-Ala n ; n = 2-4) were examined using a linear ion trap mass spectrometer. CAD spectra of gas-phase heterochiral H(+)(D-Trp)(L-Ala n ) and homochiral H(+)(L-Trp)(L-Ala n ) noncovalent complexes were obtained as a function of the peptide size n...
June 2017: Origins of Life and Evolution of the Biosphere
Claudia Pacelli, Laura Selbmann, Laura Zucconi, Jean-Pierre De Vera, Elke Rabbow, Gerda Horneck, Rosa de la Torre, Silvano Onofri
The search for traces of extinct or extant life in extraterrestrial environments is one of the main goals for astrobiologists; due to their ability to withstand stress producing conditions, extremophiles are perfect candidates for astrobiological studies. The BIOMEX project aims to test the ability of biomolecules and cell components to preserve their stability under space and Mars-like conditions, while at the same time investigating the survival capability of microorganisms. The experiment has been launched into space and is being exposed on the EXPOSE-R2 payload, outside of the International Space Station (ISS) over a time-span of 1...
June 2017: Origins of Life and Evolution of the Biosphere
O Podolich, I Zaets, O Kukharenko, I Orlovska, O Reva, L Khirunenko, M Sosnin, A Haidak, S Shpylova, I Rohutskyy, A Kharina, М Skoryk, M Kremenskoy, D Klymchuk, R Demets, J-P de Vera, N Kozyrovska
Biofilm-forming microbial communities are known as the most robust assemblages that can survive in harsh environments. Biofilm-associated microorganisms display greatly increased resistance to physical and chemical adverse conditions, and they are expected to be the first form of life on Earth or anywhere else. Biological molecules synthesized by biofilm -protected microbiomes may serve as markers of the nucleoprotein life. We offer a new experimental model, a kombucha multimicrobial culture (KMC), to assess a structural integrity of a widespread microbial polymer - cellulose - as a biosignature of bacteria-producers for the multipurpose international project "BIOlogical and Mars Experiment (BIOMEX)", which aims to study the vitality of pro- and eukaryotic organisms and the stability of organic biomolecules in contact with minerals to analyze the detectability of life markers in the context of a planetary background...
June 2017: Origins of Life and Evolution of the Biosphere
Vassilissa Vinogradoff, Albert Rimola, Fabrice Duvernay, Gregoire Danger, Patrice Theulé, Thierry Chiavassa
No abstract text is available yet for this article.
June 2017: Origins of Life and Evolution of the Biosphere
Kunio Kawamura, Marie-Christine Maurel
Here we overview the chemical evolution of RNA molecules from inorganic material through mineral-mediated RNA formation compatible with the plausible early Earth environments. Pathways from the gas-phase reaction to the formation of nucleotides, activation and oligomerization of nucleotides, seem to be compatible with specific environments. However, how these steps interacted is not clear since the chemical conditions are frequently different and can be incompatible between them; thus the products would have migrated from one place to another, suitable for further chemical evolution...
April 21, 2017: Origins of Life and Evolution of the Biosphere
Arkadii V Tarasevych, Thomas Vives, Valeriy N Snytnikov, Jean-Claude Guillemin
The heating above 400 °C of serine, cysteine, selenocysteine and threonine leads to a complete decomposition of the amino acids and to the formation in low yields of alanine for the three formers and of 2-aminobutyric acid for the latter. At higher temperature, this amino acid is observed only when sublimable α-alkyl-α-amino acids are present, and with an enantiomeric excess dependent on several parameters. Enantiopure or enantioenriched Ser, Cys, Sel or Thr is not able to transmit its enantiomeric excess to the amino acid formed during its decomposition...
March 31, 2017: Origins of Life and Evolution of the Biosphere
Marie-Paule Bassez
In this article, anoxic and oxic hydrolyses of rocks containing Fe (II) Mg-silicates and Fe (II)-monosulfides are analyzed at 25 °C and 250-350 °C. A table of the products is drawn. It is shown that magnetite and hydrogen can be produced during low-temperature (25 °C) anoxic hydrolysis/oxidation of ferrous silicates and during high-temperature (250 °C) anoxic hydrolysis/oxidation of ferrous monosulfides. The high-T (350 °C) anoxic hydrolysis of ferrous silicates leads mainly to ferric oxides/hydroxides such as the hydroxide ferric trihydroxide, the oxide hydroxide goethite/lepidocrocite and the oxide hematite, and to Fe(III)-phyllosilicates...
March 31, 2017: Origins of Life and Evolution of the Biosphere
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"