Read by QxMD icon Read

Trends in Genetics: TIG

Michael R Brent
One of the principal mechanisms by which cells differentiate and respond to changes in external signals or conditions is by changing the activity levels of transcription factors (TFs). This changes the transcription rates of target genes via the cell's TF network, which ultimately contributes to reconfiguring cellular state. Since microarrays provided our first window into global cellular state, computational biologists have eagerly attacked the problem of mapping TF networks, a key part of the cell's control circuitry...
November 2016: Trends in Genetics: TIG
Christopher E Slagle, Frank L Conlon
Congenital heart defects remain a leading cause of infant mortality in the western world, despite decades of research focusing on cardiovascular development and disease. With the recent emergence of several high-throughput technologies including RNA sequencing, chromatin-immunoprecipitation-coupled sequencing, mass-spectrometry-based proteomics analyses, and the numerous variations of these strategies, investigations into cardiac development have been transformed from candidate-based studies into whole-genome, -transcriptome, and -proteome undertakings...
November 2016: Trends in Genetics: TIG
Steven W Criscione, Yee Voan Teo, Nicola Neretti
Cellular senescence, an irreversible growth arrest triggered by a variety of stressors, plays important roles in normal physiology and tumor suppression, but accumulation of senescent cells with age contributes to the functional decline of tissues. Senescent cells undergo dramatic alterations to their chromatin landscape that affect genome accessibility and their transcriptional program. These include the loss of DNA-nuclear lamina interactions, the distension of centromeres, and changes in chromatin composition that can lead to the activation of retrotransposons...
November 2016: Trends in Genetics: TIG
Volker Boehm, Niels H Gehring
The exon junction complex (EJC) is an RNA-binding protein complex that is assembled and deposited onto mRNAs during splicing. The EJC comprises four core components that bind to not only canonical sites upstream of exon-exon junctions, but also to noncanonical sites at other positions in exons. EJC-associated proteins are recruited by the EJC at different steps of gene expression to execute the multiple functions of the EJC. Recently, new insights have been obtained into how EJCs stimulate pre-mRNA splicing, and mRNA export, translation, and degradation...
November 2016: Trends in Genetics: TIG
Anne-Laure Valton, Marie-Noëlle Prioleau
DNA replication is a highly regulated process that ensures the correct duplication of the genome at each cell cycle. A precise cell type-specific temporal program controls the duplication of complex vertebrate genomes in an orderly manner. This program is based on the regulation of both replication origin firing and replication fork progression. G-quadruplexes (G4s), DNA secondary structures displaying noncanonical Watson-Crick base pairing, have recently emerged as key controllers of genome duplication. Here we discuss the various means by which G4s affect this fundamental cellular process...
November 2016: Trends in Genetics: TIG
Jessica K Tyler
To carry epigenetic information, the chromatin structure must be accurately rebuilt after its deconstruction during genomic replication. Using an elegant, novel approach, Vasseur et al.[1] reveal that transcription plays a key role in sculpting the chromatin after DNA replication.
November 2016: Trends in Genetics: TIG
Ray Ming, Ching Man Wai, Romain Guyot
Pineapple occupies an important phylogenetic position and its reference genome expedites genomic research within the family Bromeliaceae and more widely among monocots. One such research focus is the evolution of crassulacean acid metabolism (CAM) photosynthesis. Acquiring circadian clock cis-regulatory elements in CAM-related genes might be a critical step in the evolution of this form of photosynthesis. Follow-up studies will clarify the processes and evolutionary forces leading to the multiple independent origins of CAM photosynthesis within the family Bromeliaceae and in over 400 genera across 36 families...
November 2016: Trends in Genetics: TIG
Ying-Hsin Chen, Jeff Coller
Precise elimination of maternal mRNAs plays a critical role during the maternal-to-zygotic transition (MZT) to promote developmental processing. Two new studies demonstrate that, in eukaryotes, codon-mediated decay is a conserved mechanism to shape maternal mRNA stability by affecting deadenylation rate in a translation-dependent manner. These studies add to a growing body of literature suggesting that translational elongation rates are a major determinant of mRNA stability.
November 2016: Trends in Genetics: TIG
Raz Bar-Ziv, Yoav Voichek, Naama Barkai
DNA replication perturbs the dosage balance between genes that replicate early during S phase and those that replicate late. If propagated to influence protein content, this dosage imbalance could influence cellular functions. In bacteria, mechanisms have evolved to use this imbalance to tune certain processes with the rate of cell growth. By contrast, eukaryotes buffer this dosage imbalance to ensure gene expression homeostasis also during S phase. Here, we outline classical and more recent studies describing how different organisms deal with this replication-dependent dosage imbalance, and describe recent results linking the eukaryotic buffering mechanism to replication-dependent histone acetylation...
November 2016: Trends in Genetics: TIG
Kayla Viets, Kiara C Eldred, Robert J Johnston
Across the animal kingdom, visual systems have evolved to be uniquely suited to the environments and behavioral patterns of different species. Visual acuity and color perception depend on the distribution of photoreceptor (PR) subtypes within the retina. Retinal mosaics can be organized into three broad categories: stochastic/regionalized, regionalized, and ordered. We describe here the retinal mosaics of flies, zebrafish, chickens, mice, and humans, and the gene regulatory networks controlling proper PR specification in each...
October 2016: Trends in Genetics: TIG
Afsoon Saadin, Michelle Starz-Gaiano
Drosophila border cells undergo a straightforward and stereotypical collective migration during egg development. However, a complex genetic program underlies this process. A variety of approaches, including biochemical, genetic, and imaging strategies have identified many regulatory components, revealing layers of control. This complexity suggests that the active processes of evaluating the environment, remodeling the cytoskeleton, and coordinating movements among cells, demand rapid systems for modulating cell behaviors...
October 2016: Trends in Genetics: TIG
He Huang, Dmitri A Nusinow
In Arabidopsis thaliana an assembly of proteins named the evening complex (EC) has been established as an essential component of the circadian clock with conserved functions in regulating plant growth and development. Recent studies identifying EC-regulated genes and EC-interacting proteins have expanded our understanding of EC function. In this review we focus on new progress uncovering how the EC contributes to the circadian network through the integration of environmental inputs and the direct regulation of key clock genes...
October 2016: Trends in Genetics: TIG
Hélène Scheer, Hélène Zuber, Caroline De Almeida, Dominique Gagliardi
Groundbreaking discoveries have uncovered the widespread post-transcriptional modifications of all classes of RNA. These studies have led to the emerging notion of an 'epitranscriptome' as a new layer of gene regulation. Diverse modifications control RNA fate, including the 3' addition of untemplated nucleotides or 3' tailing. The most exciting recent discoveries in 3' tailing are related to uridylation. Uridylation targets various noncoding RNAs, from small RNAs and their precursors to rRNAs, and U tails mostly regulate processing or degradation...
October 2016: Trends in Genetics: TIG
Bethany Signal, Brian S Gloss, Marcel E Dinger
Although a considerable portion of eukaryotic genomes is transcribed as long noncoding RNAs (lncRNAs), the vast majority are functionally uncharacterised. The rapidly expanding catalogue of mechanistically investigated lncRNAs has provided evidence for distinct functional subclasses, which are now ripe for exploitation as a general model to predict functions for uncharacterised lncRNAs. By utilising publicly-available genome-wide datasets and computational methods, we present several developed and emerging in silico approaches to characterise and predict the functions of lncRNAs...
October 2016: Trends in Genetics: TIG
Harry G Leitch, M Azim Surani, Petra Hajkova
Mouse pluripotent embryonic stem (ES) cells can exist in distinct yet interchangeable epigenetic states dictated by their culture environment. Previous reports have shown that naïve pluripotent cells grown in the presence of 2i are characterised by global DNA hypomethylation and changes in the abundance and distribution of histone modifications. New research provides insights regarding how this might be achieved.
October 2016: Trends in Genetics: TIG
Dror Hollander, Shiran Naftelberg, Galit Lev-Maor, Alberto R Kornblihtt, Gil Ast
The splice sites (SSs) delimiting an intron are brought together in the earliest step of spliceosome assembly yet it remains obscure how SS pairing occurs, especially when introns are thousands of nucleotides long. Splicing occurs in vivo in mammals within minutes regardless of intron length, implying that SS pairing can instantly follow transcription. Also, factors required for SS pairing, such as the U1 small nuclear ribonucleoprotein (snRNP) and U2AF65, associate with RNA polymerase II (RNAPII), while nucleosomes preferentially bind exonic sequences and associate with U2 snRNP...
October 2016: Trends in Genetics: TIG
Yann Joly, Derek So, Katie Saulnier, Stephanie O M Dyke
Emerging ethical, legal, and social implications (ELSI) scholarship in epigenetics has focused largely on hypothetical issues involving institutional racism, discrimination, and eugenics. To avoid an unwarranted backlash against this promising research field, we encourage a more balanced ELSI discussion conveying the full spectrum of issues faced by stakeholders.
October 2016: Trends in Genetics: TIG
Geoff Macintyre, Bauke Ylstra, James D Brenton
The identification of mutations that guide therapy selection for patients with cancer is now routine in many clinical centres. The majority of assays used for solid tumour profiling use DNA sequencing to interrogate somatic point mutations because they are relatively easy to identify and interpret. Many cancers, however, including high-grade serous ovarian, oesophageal, and small-cell lung cancer, are driven by somatic structural variants that are not measured by these assays. Therefore, there is currently an unmet need for clinical assays that can cheaply and rapidly profile structural variants in solid tumours...
September 2016: Trends in Genetics: TIG
Gertraud Burger, Sandrine Moreira, Matus Valach
Unrecognizable genes are an unsettling problem in genomics. Here, we survey the various types of cryptic genes and the corresponding deciphering strategies employed by cells. Encryption that renders genes substantially different from homologs in other species includes sequence substitution, insertion, deletion, fragmentation plus scrambling, and invasion by mobile genetic elements. Cells decode cryptic genes at the DNA, RNA or protein level. We will focus on a recently discovered case of unparalleled encryption involving massive gene fragmentation and nucleotide deletions and substitutions, occurring in the mitochondrial genome of a poorly understood protist group, the diplonemids...
September 2016: Trends in Genetics: TIG
Ragini Bhargava, David O Onyango, Jeremy M Stark
Single-strand annealing (SSA) is a DNA double-strand break (DSB) repair pathway that uses homologous repeats to bridge DSB ends. SSA involving repeats that flank a single DSB causes a deletion rearrangement between the repeats, and hence is relatively mutagenic. Nevertheless, this pathway is conserved, in that SSA events have been found in several organisms. In this review, we describe the mechanism of SSA and its regulation, including the cellular conditions that may favor SSA versus other DSB repair events...
September 2016: Trends in Genetics: TIG
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"