Read by QxMD icon Read

Natural Product Reports

Soleiman E Helaly, Benjarong Thongbai, Marc Stadler
Covering: up to December 2017The diversity of secondary metabolites in the fungal order Xylariales is reviewed with special emphasis on correlations between chemical diversity and biodiversity as inferred from recent taxonomic and phylogenetic studies. The Xylariales are arguably among the predominant fungal endophytes, which are the producer organisms of pharmaceutical lead compounds including the antimycotic sordarins and the antiparasitic nodulisporic acids, as well as the marketed drug, emodepside. Many Xylariales are "macromycetes", which form conspicuous fruiting bodies (stromata), and the metabolite profiles that are predominant in the stromata are often complementary to those encountered in corresponding mycelial cultures of a given species...
May 18, 2018: Natural Product Reports
Ioannis A Stringlis, Hao Zhang, Corné M J Pieterse, Melvin D Bolton, Ronnie de Jonge
Covering: up to 2018Plants live in close association with a myriad of microbes that are generally harmless. However, the minority of microbes that are pathogens can severely impact crop quality and yield, thereby endangering food security. By contrast, beneficial microbes provide plants with important services, such as enhanced nutrient uptake and protection against pests and diseases. Like pathogens, beneficial microbes can modulate host immunity to efficiently colonize the nutrient-rich niches within and around the roots and aerial tissues of a plant, a phenomenon mirroring the establishment of commensal microbes in the human gut...
May 14, 2018: Natural Product Reports
Desalegn W Etalo, Je-Seung Jeon, Jos M Raaijmakers
Covering: 1981-2017Plants are colonized by an astounding number of microorganisms that can reach cell densities much greater than the number of plant cells. Various plant-associated microorganisms can have profound beneficial effects on plant growth, development, physiology and tolerance to (a)biotic stress. In return, plants release metabolites into their direct surroundings, thereby feeding the microbial community and influencing their composition, gene expression and the production of secondary metabolites...
May 3, 2018: Natural Product Reports
Helga U van der Heul, Bohdan L Bilyk, Kenneth J McDowall, Ryan F Seipke, Gilles P van Wezel
Covering: 2000 to 2018The antimicrobial activity of many of their natural products has brought prominence to the Streptomycetaceae, a family of Gram-positive bacteria that inhabit both soil and aquatic sediments. In the natural environment, antimicrobial compounds are likely to limit the growth of competitors, thereby offering a selective advantage to the producer, in particular when nutrients become limited and the developmental programme leading to spores commences. The study of the control of this secondary metabolism continues to offer insights into its integration with a complex lifecycle that takes multiple cues from the environment and primary metabolism...
May 3, 2018: Natural Product Reports
Alejandro M Roncero, Ignacio E Tobal, Rosalina F Moro, David Díez, Isidro S Marcos
Covering: 1970 to 2017Diterpenes with a halimane skeleton constitute a small group of natural products that can be biogenetically considered as being between labdane and clerodane diterpenoids. Some of these compounds show biological activities, such as antitumour, mosquito repellency, germination inhibition and antimicrobial, as well as being biomarkers for tuberculosis. To the best of our knowledge, there are no reviews on these compounds. In this review, halimane skeleton diterpenoids are classified according to their biogenetic origin, characterization and/or the enzymes involved in their biosynthesis...
April 27, 2018: Natural Product Reports
Anja Greule, Jeanette E Stok, James J De Voss, Max J Cryle
Covering: 2000 up to 2018The cytochromes P450 (P450s) are a superfamily of heme-containing monooxygenases that perform diverse catalytic roles in many species, including bacteria. The P450 superfamily is widely known for the hydroxylation of unactivated C-H bonds, but the diversity of reactions that P450s can perform vastly exceeds this undoubtedly impressive chemical transformation. Within bacteria, P450s play important roles in many biosynthetic and biodegradative processes that span a wide range of secondary metabolite pathways and present diverse chemical transformations...
April 18, 2018: Natural Product Reports
Ke Li, Tyler J Buchinger, Weiming Li
Covering: up to 2018Fish use a diverse collection of molecules to communicate with conspecifics. Since Karlson and Lüscher termed these molecules 'pheromones', chemists and biologists have joined efforts to characterize their structures and functions. In particular, the understanding of insect pheromones developed at a rapid pace, set, in part, by the use of bioassay-guided fractionation and natural product chemistry. Research on vertebrate pheromones, however, has progressed more slowly. Initially, biologists characterized fish pheromones by screening commercially available compounds suspected to act as pheromones based upon their physiological function...
April 17, 2018: Natural Product Reports
Beau P Pritchett, Brian M Stoltz
Covering: up to the end of 2017Enantioselective Pd-catalyzed allylic alkylations of prochiral enolates represent a powerful tool for the construction of all-carbon quaternary stereocenters. This review describes the emergence of such reactions as strategic linchpins that enable efficient, stereocontrolled syntheses of Aspidosperma and related monoterpene indole alkaloids.
April 16, 2018: Natural Product Reports
Christopher Perry, Emmanuel L C de Los Santos, Lona M Alkhalaf, Gregory L Challis
Covering: up to the end of 2017The roles played by Rieske non-heme iron-dependent oxygenases in natural product biosynthesis are reviewed, with particular focus on experimentally characterised examples. Enzymes belonging to this class are known to catalyse a range of transformations, including oxidative carbocyclisation, N-oxygenation, C-hydroxylation and C-C desaturation. Examples of such enzymes that have yet to be experimentally investigated are also briefly described and their likely functions are discussed...
April 13, 2018: Natural Product Reports
Hideomi Itoh, Kanako Tago, Masahito Hayatsu, Yoshitomo Kikuchi
Covering: up to 2018Insects live in a world full of toxic compounds such as plant toxins and manmade pesticides. To overcome the effects of these toxins, herbivorous insects have evolved diverse, elaborate mechanisms of resistance, such as toxin avoidance, target-site alteration, and detoxification. These resistance mechanisms are thought to be encoded by the insects' own genomes, and in many cases, this holds true. However, recent omics analyses, in conjunction with classic culture-dependent analyses, have revealed that a number of insects possess specific gut microorganisms, some of which significantly contribute to resistance against phytotoxins and pesticides by degrading such chemical compounds...
April 12, 2018: Natural Product Reports
Kenichi Yokoyama, Edward A Lilla
Covering: up to the end of 2017C-C bond formations are frequently the key steps in cofactor and natural product biosynthesis. Historically, C-C bond formations were thought to proceed by two electron mechanisms, represented by Claisen condensation in fatty acids and polyketide biosynthesis. These types of mechanisms require activated substrates to create a nucleophile and an electrophile. More recently, increasing number of C-C bond formations catalyzed by radical SAM enzymes are being identified. These free radical mediated reactions can proceed between almost any sp3 and sp2 carbon centers, allowing introduction of C-C bonds at unconventional positions in metabolites...
April 10, 2018: Natural Product Reports
Kimberly R Klas, Hikaru Kato, Jens C Frisvad, Fengan Yu, Sean A Newmister, Amy E Fraley, David H Sherman, Sachiko Tsukamoto, Robert M Williams
Covering: up to February 2017Various fungi of the genera Aspergillus, Penicillium, and Malbranchea produce prenylated indole alkaloids possessing a bicyclo[2.2.2]diazaoctane ring system. After the discovery of distinct enantiomers of the natural alkaloids stephacidin A and notoamide B, from A. protuberus MF297-2 and A. amoenus NRRL 35660, another fungi, A. taichungensis, was found to produce their diastereomers, 6-epi-stephacidin A and versicolamide B, as major metabolites. Distinct enantiomers of stephacidin A and 6-epi-stephacidin A may be derived from a common precursor, notoamide S, by enzymes that form a bicyclo[2...
April 10, 2018: Natural Product Reports
Bhuwan Khatri Chhetri, Serge Lavoie, Anne Marie Sweeney-Jones, Julia Kubanek
Covering: 2012 to 2017This article reviews recent reports on the structural revision of natural products. Through a critical assessment of the original and revised published structures, the article addresses why each structure was targeted for revision, discusses the techniques and key discrepancies that led to the proposal of the revised structure, and offers measures that may have been taken during the original structure determination to prevent error. With the revised structures in hand, weaknesses of original proposals are assessed, providing a better understanding on the logic behind structure determination...
April 6, 2018: Natural Product Reports
Tobias Engl, Martin Kaltenpoth
Covering: up to 2018Pheromones serve as chemical signals between individuals of the same species and play important roles for mate localization and mate choice as well as other social interactions in insects. A growing body of literature indicates that microbial symbionts can modulate their hosts' chemical profiles, mate choice decisions and social behavior. This modulation can occur by the direct biosynthesis of pheromone components or the provisioning of precursors, or through general changes in the metabolite pool of the host and its resource allocation into pheromone production...
March 22, 2018: Natural Product Reports
Anna J Komor, Andrew J Jasniewski, Lawrence Que, John D Lipscomb
Covering: up to 2017The participation of non-heme dinuclear iron cluster-containing monooxygenases in natural product biosynthetic pathways has been recognized only recently. At present, two families have been discovered. The archetypal member of the first family, CmlA, catalyzes β-hydroxylation of l-p-aminophenylalanine (l-PAPA) covalently linked to the nonribosomal peptide synthetase (NRPS) CmlP, thereby effecting the first step in the biosynthesis of chloramphenicol by Streptomyces venezuelae. CmlA houses the diiron cluster in a metallo-β-lactamase protein fold instead of the 4-helix bundle fold of nearly every other diiron monooxygenase...
March 19, 2018: Natural Product Reports
Hitomi Nakamura, Yudai Matsuda, Ikuro Abe
Covering: up to 2018Non-heme iron enzymes are a versatile family of oxygenases that catalyze remarkable types of chemistry. This review highlights the intriguing chemistry of non-heme iron enzymes, especially those utilizing α-ketoglutarate (α-KG) as a co-substrate, in fungal secondary metabolism and aims to summarize how nature diversifies and complexifies natural products.
March 7, 2018: Natural Product Reports
J M Hagel, P J Facchini
Covering: up to 20182-Oxoglutarate-dependent oxygenases (2ODOs) comprise a large enzyme superfamily in plant genomes, second in size only to the cytochromes P450 monooxygenase (CYP) superfamily. 2ODOs participate in both primary and specialized plant pathways, and their occurrence across all life kingdoms points to an ancient origin. Phylogenetic evidence supports substantial expansion and diversification of 2ODOs following the split from the common ancestor of land plants. More conserved roles for these enzymes include oxidation within hormone metabolism, such as the recently described capacity of Dioxygenase for Auxin Oxidation (DAO) for governing auxin homeostasis...
February 28, 2018: Natural Product Reports
Mark W Ruszczycky, Aoshu Zhong, Hung-Wen Liu
Radical SAM enzymes use S-adenosyl-l-methionine as an oxidant to initiate radical-mediated transformations that would otherwise not be possible with Lewis acid/base chemistry alone. These reactions are either redox neutral or oxidative leading to certain expectations regarding the role of SAM as either a reusable cofactor or the ultimate electron acceptor during each turnover. However, these expectations are frequently not realized resulting in fundamental questions regarding the redox handling and movement of electrons associated with these biological catalysts...
February 27, 2018: Natural Product Reports
Robert A Hill, Andrew Sutherland
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as tundrenone from Methylobacter tundripaludum.
April 25, 2018: Natural Product Reports
Maho Morita, Eric W Schmidt
Covering: up to 2018 Symbiotic microbes interact with animals, often by producing natural products (specialized metabolites; secondary metabolites) that exert a biological role. A major goal is to determine which microbes produce biologically important compounds, a deceptively challenging task that often rests on correlative results, rather than hypothesis testing. Here, we examine the challenges and successes from the perspective of marine animal-bacterial mutualisms. These animals have historically provided a useful model because of their technical accessibility...
April 25, 2018: Natural Product Reports
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"