Read by QxMD icon Read

Advances in Biochemical Engineering/biotechnology

Stefan C Weiss, Nicole Egetenmeyer, Wolfgang Schulz
Modern analytical test methods increasingly detect anthropogenic organic substances and their transformation products in water samples and in the environment. The presence of these compounds might pose a risk to the aquatic environment. To determine a possible (eco)toxicological risk, aquatic samples are tested using various bioassays, including sub-organismic assays such as the luminescent bacteria inhibition test, the acetylcholinesterase inhibition test, and the umu-test. The effect-directed analysis (EDA) combines physicochemical separation methods with biological (in vitro) tests...
October 19, 2016: Advances in Biochemical Engineering/biotechnology
Gaspar Morgado, Daniel Gerngross, Tania M Roberts, Sven Panke
Cell-free biosynthesis in the form of in vitro multi-enzyme reaction networks or enzyme cascade reactions emerges as a promising tool to carry out complex catalysis in one-step, one-vessel settings. It combines the advantages of well-established in vitro biocatalysis with the power of multi-step in vivo pathways. Such cascades have been successfully applied to the synthesis of fine and bulk chemicals, monomers and complex polymers of chemical importance, and energy molecules from renewable resources as well as electricity...
October 19, 2016: Advances in Biochemical Engineering/biotechnology
V Fourmond, C Léger
This chapter presents the fundamentals of electrochemistry in the context of protein electrochemistry. We discuss redox proteins and enzymes that are not photoactive. Of course, the principles described herein also apply to photobioelectrochemistry, as discussed in later chapters of this book. Depending on which experiment is considered, electron transfer between proteins and electrodes can be either direct or mediated, and achieved in a variety of configurations: with the protein and/or the mediator free to diffuse in solution, immobilized in a thick, hydrated film, or adsorbed as a sub-monolayer on the electrode...
September 16, 2016: Advances in Biochemical Engineering/biotechnology
Eva Garcia-Ruiz, Mohammad HamediRad, Huimin Zhao
The microbial metabolic versatility found in nature has inspired scientists to create microorganisms capable of producing value-added compounds. Many endeavors have been made to transfer and/or combine pathways, existing or even engineered enzymes with new function to tractable microorganisms to generate new metabolic routes for drug, biofuel, and specialty chemical production. However, the success of these pathways can be impeded by different complications from an inherent failure of the pathway to cell perturbations...
September 16, 2016: Advances in Biochemical Engineering/biotechnology
Yoshimitsu Oda
During the past 30 years there has been considerable progress in the development of bacterial test systems for use in genotoxicity testing by the stable introduction of expression vectors (cDNAs) coding for xenobiotic-metabolizing enzymes into bacterial cells. The development not only provides insights into the mechanisms of bioactivation of xenobiotic compounds but also evaluates the roles of enzymes involved in metabolic activation or inactivation in chemical carcinogenesis. This review describes recent advances in bacterial genotoxicity assays and their future prospects, with a focus on the development and application of genetically engineering bacterial cells to incorporate some of the enzymatic activities involved in the bio-activation process of xenobiotics...
September 13, 2016: Advances in Biochemical Engineering/biotechnology
Markus Brinkmann, Thomas G Preuss, Henner Hollert
International legislation, such as the European REACH regulation (registration, evaluation, authorization, and restriction of chemicals), mandates the assessment of potential risks of an ever-growing number of chemicals to the environment and human health. Although this legislation is considered one of the most important investments in consumer safety ever, the downside is that the current testing strategies within REACH rely on extensive animal testing. To address the ethical conflicts arising from these increased testing requirements, decision-makers, such as the European Chemicals Agency (ECHA), are committed to Russel and Burch's 3R principle (i...
September 13, 2016: Advances in Biochemical Engineering/biotechnology
Gisela De Aragao Umbuzeiro, Minne Heringa, Errol Zeiger
There is ongoing concern about the consequences of mutations in humans and biota arising from environmental exposures to industrial and other chemicals. Genetic toxicity tests have been used to analyze chemicals, foods, drugs, and environmental matrices such as air, water, soil, and wastewaters. This is because the mutagenicity of a substance is highly correlated with its carcinogenicity. However, no less important are the germ cell mutations, because the adverse outcome is related not only to an individual but also to population levels...
September 9, 2016: Advances in Biochemical Engineering/biotechnology
Pablo Steinberg
The evaluation of the carcinogenic potential of chemicals constitutes an essential step in assessing the risk that the chemicals pose to human health. The "gold standard" method to evaluate the carcinogenic potential of chemicals is the carcinogenicity test in laboratory animals. However, because carcinogenicity studies in vivo are extremely time-consuming, expensive, make use of a high number of animals, and cannot be used to screen a high number of compounds at the same time, various different in vitro cell transformation assays have been developed...
August 10, 2016: Advances in Biochemical Engineering/biotechnology
Lars J C Jeuken
The interactions between proteins and electrode surfaces are of fundamental importance in bioelectrochemistry, including photobioelectrochemistry. In order to optimise the interaction between electrode and redox protein, either the electrode or the protein can be engineered, with the former being the most adopted approach. This tutorial review provides a basic description of the most commonly used electrode materials in bioelectrochemistry and discusses approaches to modify these surfaces. Carbon, gold and transparent electrodes (e...
August 10, 2016: Advances in Biochemical Engineering/biotechnology
Annika Jahnke, Gesine Witt, Sabine Schäfer, Nora Haase, Beate I Escher
The combination of polymer-based passive sampling to collect complex environmental mixtures of pollutants, the transfer of these mixtures into bioassays, and their related toxicological characterization is still in its infancy. However, this approach has considerable potential to improve environmental hazard and risk assessment for two reasons. First, the passive sampler collects a broad range of chemicals representing the fraction of compounds available for diffusion and (bio)uptake, excluding a large part of the matrix; thus, extensive sample cleanup which could discriminate certain compounds can be avoided...
August 4, 2016: Advances in Biochemical Engineering/biotechnology
Nicolas Plumeré, Marc M Nowaczyk
This chapter presents biophotoelectrochemical systems where one of nature's photosynthetic proteins, such as photosystem 1 (PS1), photosystem 2 (PS2), or bacterial reaction centers, are employed to create devices for technological applications. We use recent advances in biophotoelectrodes for energy conversion and sensing to illustrate the fundamental approaches in half-cell design and characterization. The aim is to guide electrochemists and photosynthetic researchers in the development of hybrid systems interfacing photosynthetic proteins with electrodes ranging from biosensors to biophotovoltaic cells...
July 31, 2016: Advances in Biochemical Engineering/biotechnology
Philip A Ash, Kylie A Vincent
A more complete understanding of bioelectrochemical interfaces is of increasing importance in both fundamental studies and biotechnological applications of proteins. Bioelectrochemical methods provide detailed information about the activity or rate of a process, but in situ spectroscopic methods are needed to gain direct structural insight into functionally relevant states. A number of methods have been reported that allow electrochemical and spectroscopic data to be collected from the same electrode, providing direct spectroscopic 'snapshots' of protein function, and here we focus on the application of infrared and Raman spectroscopies to the study of electrode-immobilised species...
July 31, 2016: Advances in Biochemical Engineering/biotechnology
Gashaw Mamo
Aerobic microorganisms have been sources of medicinal agents for several decades and an impressive variety of drugs have been isolated from their cultures, studied and formulated to treat or prevent diseases. On the other hand, anaerobes, which are believed to be the oldest life forms on earth and evolved remarkably diverse physiological functions, have largely been neglected as sources of bioactive compounds. However, results obtained from the limited research done so far show that anaerobes are capable of producing a range of interesting bioactive compounds that can promote human health...
July 19, 2016: Advances in Biochemical Engineering/biotechnology
Anna Schnürer
Biogas, containing energy-rich methane, is produced by microbial decomposition of organic material under anaerobic conditions. Under controlled conditions, this process can be used for the production of energy and a nutrient-rich residue suitable for use as a fertilising agent. The biogas can be used for production of heat, electricity or vehicle fuel. Different substrates can be used in the process and, depending on substrate character, various reactor technologies are available. The microbiological process leading to methane production is complex and involves many different types of microorganisms, often operating in close relationships because of the limited amount of energy available for growth...
July 19, 2016: Advances in Biochemical Engineering/biotechnology
Kilian E C Smith, Sabine Schäfer
Toxicity testing using in vitro bioassays is assuming an increasingly important role. Nevertheless, several issues remain with regard to their proper application, which mainly relate to the proper definition and control of the test chemical(s) concentrations to which the cells or tissues are exposed. This has fundamental implications for understanding the underlying relationship between the in vitro exposure regime and response, and leads to uncertainty in the resulting bioassay data. This chapter covers the definition and control of exposure of hydrophobic organic chemicals (HOCs) in in vitro bioassays aimed at measuring their toxicity...
July 13, 2016: Advances in Biochemical Engineering/biotechnology
Ed W J van Niel
Methane is produced usually from organic waste in a straightforward anaerobic digestion process. However, hydrogen production is technically more challenging as more stages are needed to convert all biomass to hydrogen because of thermodynamic constraints. Nevertheless, the benefit of hydrogen is that it can be produced, both biologically and thermochemically, in more than one way from either organic compounds or water. Research in biological hydrogen production is booming, as reflected by the myriad of recently published reviews on the topic...
June 9, 2016: Advances in Biochemical Engineering/biotechnology
Rajni Hatti-Kaul, Bo Mattiasson
Anaerobic microorganisms present in diverse ecological niches employ alternative strategies for energy conservation in the absence of oxygen which enables them to play a key role in maintaining the global cycles of carbon, nitrogen, and sulfur, and the breakdown of persistent compounds. Thereby they become useful tools in industrial and environmental biotechnology. Although anaerobes have been relatively neglected in comparison to their aerobic counterparts, with increasing knowledge about their diversity and metabolic potential and the development of genetic tools and process technologies to utilize them, we now see a rapid expansion of their applications in the society...
June 9, 2016: Advances in Biochemical Engineering/biotechnology
Cheng-Wei Ma, Li-Bang Zhou, An-Ping Zeng
Living organisms have been exploited as production hosts for a large variety of compounds. To improve the efficiency of bioproduction, metabolic pathways in an organism are usually manipulated by various genetic modifications. However, bottlenecks during the conversion of substrate to a desired product may result from cellular regulations at different levels. Dynamic regulation of metabolic pathways according to the need of cultivation process is therefore essential for developing effective bioprocesses, but represents a major challenge in metabolic engineering and synthetic biology...
June 9, 2016: Advances in Biochemical Engineering/biotechnology
Matthew Deaner, Hal S Alper
Control of gene expression is crucial to optimize metabolic pathways and synthetic gene networks. Promoters and terminators are stretches of DNA upstream and downstream (respectively) of genes that control both the rate at which the gene is transcribed and the rate at which mRNA is degraded. As a result, both of these elements control net protein expression from a synthetic construct. Thus, it is highly important to discover and engineer promoters and terminators with desired characteristics. This chapter highlights various approaches taken to catalogue these important synthetic elements...
June 9, 2016: Advances in Biochemical Engineering/biotechnology
Rosa Aragão Börner
Anaerobic microorganisms play important roles in different biotechnological processes. Their complex metabolism and special cultivation requirements have led to less isolated representatives in comparison to their aerobic counterparts. In view of that, the isolation and cultivation of anaerobic microorganisms is still a promising venture, and conventional methodologies as well as considerations and modifications are presented here. An insight into new methodologies and devices as well as a discussion on future perspectives for the cultivation of anaerobes may open the prospects of the exploitation of these microorganisms as a source for biotechnology...
March 31, 2016: Advances in Biochemical Engineering/biotechnology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"