Read by QxMD icon Read

Current Genetics

Shaun R Brinsmade
A growing body of evidence points to CodY, a global regulator in Gram-positive bacteria, as a critical link between microbial physiology and pathogenesis in diverse environments. Recent studies uncovering graded regulation of CodY gene targets reflect the true nature of this transcription factor controlled by ligands and reveal nutrient availability as a potentially critical factor in modulating pathogenesis. This review will serve to update the status of the field and raise new questions to be answered.
October 15, 2016: Current Genetics
Zhong Qian, Sankar Adhya
Although discovered decades ago, the molecular identification, the diversity and versatility of functions, and the evolutionary origin of repeat DNA sequences (REPs) containing palindromic units in prokaryotes are now bringing attention to a wide range of biological scientists. A brief account of the current state of the repeat DNA sequences is presented here.
October 14, 2016: Current Genetics
Zhe Wang
Biology research has entered into big data era. Systems biology approaches therefore become the powerful tools to obtain the whole landscape of how cell separate, grow, and resist the stresses. Fission yeast Schizosaccharomyces pombe is wonderful unicellular eukaryote model, especially studying its division and metabolism can facilitate to understanding the molecular mechanism of cancer and discovering anticancer agents. In this perspective, we discuss the recent advanced fission yeast systems biology tools, mainly focus on metabolomics profiling and metabolic modeling, protein-protein interactome and genetic interaction network, DNA sequencing and applications, and high-throughput phenotypic screening...
October 11, 2016: Current Genetics
László Papp, Matthias Sipiczki, Ida Miklós
The cAMP cascade plays an important role in several biological processes. Thus, study of its molecular details can contribute to a better understanding of these processes, treatment of diseases, or even finding antifungal drug targets. To gain further information about the PKA pathway, and its evolutionarily conserved and species-specific features, the central regulator pka1 gene, which encodes the cAMP-dependent protein kinase catalytic subunit, was studied in the less known haplontic, dimorphic fission yeast Schizosaccharomyces japonicus...
September 27, 2016: Current Genetics
Neal F Lue, Eun Young Yu
All happy families are alike; each unhappy family is unhappy in its own way.-Leo Tolstoy, Anna Karenina.
September 25, 2016: Current Genetics
Marcelino Bermúdez-López, Luis Aragon
The family of RecQ helicases is evolutionary conserved from bacteria to humans and play key roles in genome stability. The budding yeast RecQ helicase Sgs1 has been implicated in several key processes during the repair of DNA damage by homologous recombination as part of the STR complex (Sgs1-Top3-Rmi1). Limited information on how is Sgs1 recruited and regulated at sites of damage is available. Recently, we and others have uncover a direct link between the Smc5/6 complex and Sgs1. Most roles of Sgs1 during recombination, including DNA end resection, Holiday junction dissolution, and crossover suppression, are regulated through Mms21-dependent SUMOylation...
September 23, 2016: Current Genetics
Elizabeth C Ruck, Samantha R Linard, Teofil Nakov, Edward C Theriot, Andrew J Alverson
Although the plastid genomes of diatoms maintain a conserved architecture and core gene set, considerable variation about this core theme exists and can be traced to several different processes. Gene duplication, pseudogenization, and loss, as well as intracellular transfer of genes to the nuclear genome, have all contributed to variation in gene content among diatom species. In addition, some noncoding sequences have highly restricted phylogenetic distributions that suggest a recent foreign origin. We sequenced the plastid genome of the marine diatom, Toxarium undulatum, and found that the genome contains three genes (chlB, chlL, and chlN) involved in light-independent chlorophyll a biosynthesis that were not previously known from diatoms...
September 21, 2016: Current Genetics
Qin-Qing Wang, Yi Lu, Zi-Yan Ren, Zhe Chi, Guang-Lei Liu, Zhen-Ming Chi
Aureobasidium melanogenum P16 is a high pullulan-producing yeast. However, glucose repression on its pullulan biosynthesis must be relieved. After the gene encoding a glucose repressor was cloned, characterized and analyzed, it was found that the repressor belonged to one member of the CreA in filamentous fungi, not to one member of the Mig1 in yeasts. After the CREA gene was fully removed from the yeast strain P16, the glucose repression in the disruptant DG41 was relieved. At the same time, the pullulan production by the disruptant DG41 was enhanced compared to that by its wild-type strain P16, and the transcriptional levels of the gene encoding a glucosyltransferase, three genes encoding glucose transporters, the gene encoding a 6-P-glucose kinase and the genes encoding α-amylase, glucoamylase and pullulanase in the disruptant DG41 were also promoted...
September 15, 2016: Current Genetics
Eugene Gladyshev, Nancy Kleckner
Numerous cytogenetic observations have shown that homologous chromosomes (or individual chromosomal loci) can engage in specific pairing interactions in the apparent absence of DNA breakage and recombination, suggesting that canonical recombination-mediated mechanisms may not be the only option for sensing DNA/DNA homology. One proposed mechanism for such recombination-independent homology recognition involves direct contacts between intact double-stranded DNA molecules. The strongest in vivo evidence for the existence of such a mechanism is provided by the phenomena of homology-directed DNA modifications in fungi, known as repeat-induced point mutation (RIP, discovered in Neurospora crassa) and methylation-induced premeiotically (MIP, discovered in Ascobolus immersus)...
September 14, 2016: Current Genetics
Benjamin Jung Fair, Jeffrey A Pleiss
Pre-mRNA splicing is an essential component of eukaryotic gene expression. Many metazoans, including humans, regulate alternative splicing patterns to generate expansions of their proteome from a limited number of genes. Importantly, a considerable fraction of human disease causing mutations manifest themselves through altering the sequences that shape the splicing patterns of genes. Thus, understanding the mechanistic bases of this complex pathway will be an essential component of combating these diseases...
September 14, 2016: Current Genetics
Vladimir Maksimov, Marcus Wäneskog, Alejandro Rodriguez, Pernilla Bjerling
The development of new drugs against the pathogenic yeast Candida albicans is compelling and the evolution of relevant bioassays is important to achieve this goal. Promising drug targets are proteins that lack human counterparts which are true for the His-to-Asp phosphorelay signal transduction systems, important for stress sensing in bacteria, fungi, and plants. In the pathogenic yeast, Candida albicans, the CaChk1 histidine kinase is a trigger of the pathway that leads to a switch from yeast to hyphal growth necessary for invasion...
September 9, 2016: Current Genetics
Diana López-Farfán, José Antonio Reyes-Darias, Tino Krell
Chemoreceptor-based signaling is a major bacterial signal transduction mechanism. Escherichia coli, the traditional model, has five chemoreceptors. Recent genome analyses have shown that many bacteria have a much higher number of chemoreceptors. Pseudomonas putida KT2440 is an alternative model that has 27 chemoreceptors and the cognate chemoeffector is known for many of them. Here, we address the question whether and which factors modulate chemoreceptor gene expression. We report reverse transcriptase quantitative PCR measurements of all KT2440 chemoreceptor genes...
September 8, 2016: Current Genetics
Md Ashiqul Alam, Niyom Kamlangdee, Joan M Kelly
Ubiquitination/deubiquitination pathways are now recognized as key components of gene regulatory mechanisms in eukaryotes. The major transcriptional repressor for carbon catabolite repression in Aspergillus nidulans is CreA, and mutational analysis led to the suggestion that a regulatory ubiquitination/deubiquitination pathway is involved. A key unanswered question is if and how this pathway, comprising CreB (deubiquitinating enzyme) and HulA (ubiquitin ligase) and other proteins, is involved in the regulatory mechanism...
September 2, 2016: Current Genetics
Marc Larochelle, Judit Hunyadkürti, François Bachand
Despite the fact that the process of mRNA polyadenylation has been known for more than 40 years, a detailed understating of the mechanism underlying polyadenylation site selection is still far from complete. As 3' end processing is intimately associated with RNA polymerase II (RNAPII) transcription, factors that can successively interact with the transcription machinery and recognize cis-acting sequences on the nascent pre-mRNA would be well suited to contribute to poly(A) site selection. Studies using the fission yeast Schizosaccharomyces pombe have recently identified Seb1, a protein that shares homology with Saccharomyces cerevisiae Nrd1 and human SCAF4/8, and that is critical for poly(A) site selection...
August 31, 2016: Current Genetics
Carlo Yague-Sanz, Enrique Vázquez, Mar Sánchez, Francisco Antequera, Damien Hermand
The occupancy of nucleosomes governs access to the eukaryotic genomes and results from a combination of biophysical features and the effect of ATP-dependent remodelling complexes. Most promoter regions show a conserved pattern characterized by a nucleosome-depleted region (NDR) flanked by nucleosomal arrays. The conserved RSC remodeler was reported to be critical to establish NDR in vivo in budding yeast but other evidences suggested that this activity may not be conserved in fission yeast. By reanalysing and expanding previously published data, we propose that NDR formation requires, at least partially, RSC in both yeast species...
August 24, 2016: Current Genetics
Lucia Hadariová, Matej Vesteg, Erik Birčák, Steven D Schwartzbach, Juraj Krajčovič
Euglena gracilis growth with antibacterial agents leads to bleaching, permanent plastid gene loss. Colorless Euglena (Astasia) longa resembles a bleached E. gracilis. To evaluate the role of bleaching in E. longa evolution, the effect of streptomycin, a plastid protein synthesis inhibitor, and ofloxacin, a plastid DNA gyrase inhibitor, on E. gracilis and E. longa growth and plastid DNA content were compared. E. gracilis growth was unaffected by streptomycin and ofloxacin. Quantitative PCR analyses revealed a time dependent loss of plastid genes in E...
August 23, 2016: Current Genetics
Shawna Miles, Linda Breeden
Development, tissue renewal and long term survival of multi-cellular organisms is dependent upon the persistence of stem cells that are quiescent, but retain the capacity to re-enter the cell cycle to self-renew, or to produce progeny that can differentiate and re-populate the tissue. Deregulated release of these cells from the quiescent state, or preventing them from entering quiescence, results in uncontrolled proliferation and cancer. Conversely, loss of quiescent cells, or their failure to re-enter cell division, disrupts organ development and prevents tissue regeneration and repair...
August 20, 2016: Current Genetics
Fabien Moretto, Folkert J van Werven
Cell fate decisions are controlled by multiple cell-intrinsic and -extrinsic factors. In budding yeast, the decision to enter gametogenesis or sporulation is dictated by nutrient availability and mating type. Recently, we showed that in diploid cells harbouring opposite mating types (MATa and MATα), the protein kinase A (PKA) and target of rapamycin complex I (TORC1) signalling pathways integrate at the promoter of the master regulatory transcription factor IME1 to control sporulation via nutrient availability (Weidberg, et al...
August 12, 2016: Current Genetics
David Pincus
Heat shock factor 1 (Hsf1) is a transcription factor that is often described as the master regulator of the heat shock response in all eukaryotes. However, due to its essentiality in yeast, Hsf1's contribution to the transcriptome under basal and heat shock conditions has never been directly determined. Using a chemical genetics approach that allowed rapid Hsf1 inactivation, my colleagues and I have recently shown that the bulk of the heat shock response is Hsf1 independent. Rather than inducing genes responsible for carrying out the various cellular processes required for adaptation to thermal stress, Hsf1 controls a dedicated set of chaperone protein genes devoted to restoring protein-folding homeostasis...
August 8, 2016: Current Genetics
Valentina Tosato, Jason Sims, Nicole West, Martina Colombin, Carlo V Bruschi
Adaptation by natural selection might improve the fitness of an organism and its probability to survive in unfavorable environmental conditions. Decoding the genetic basis of adaptive evolution is one of the great challenges to deal with. To this purpose, Saccharomyces cerevisiae has been largely investigated because of its short division time, excellent aneuploidy tolerance and the availability of the complete sequence of its genome with a thorough genome database. In the past, we developed a system, named bridge-induced translocation, to trigger specific, non-reciprocal translocations, exploiting the endogenous recombination system of budding yeast...
August 4, 2016: Current Genetics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"