Read by QxMD icon Read

Handbook of Experimental Pharmacology

Clinton E Canal
Recent, well-controlled - albeit small-scale - clinical trials show that serotonergic psychedelics, including psilocybin and lysergic acid diethylamide, possess great promise for treating psychiatric disorders, including treatment-resistant depression. Additionally, fresh results from a deluge of clinical neuroimaging studies are unveiling the dynamic effects of serotonergic psychedelics on functional activity within, and connectivity across, discrete neural systems. These observations have led to testable hypotheses regarding neural processing mechanisms that contribute to psychedelic effects and therapeutic benefits...
March 13, 2018: Handbook of Experimental Pharmacology
Jian Payandeh, David H Hackos
The voltage-gated sodium (Nav) channel Nav1.7 has been the focus of intense investigation in recent years. Human genetics studies of individuals with gain-of-function and loss-of-function mutations in the Nav1.7 channel have implicated Nav1.7 as playing a critical role in pain. Therefore, selective inhibition of Nav1.7 represents a potentially new analgesic strategy that is expected to be devoid of the significant liabilities associated with available treatment options. Although the identification and development of selective Nav channel modulators have historically been challenging, a number of recent publications has demonstrated progression of increasingly subtype-selective small molecules and peptides toward potential use in preclinical or clinical studies...
March 13, 2018: Handbook of Experimental Pharmacology
Rachel I Anderson, David E Moorman, Howard C Becker
Understanding the neural systems that drive alcohol motivation and are disrupted in alcohol use disorders is of critical importance in developing novel treatments. The dynorphin and orexin/hypocretin neuropeptide systems are particularly relevant with respect to alcohol use and misuse. Both systems are strongly associated with alcohol-seeking behaviors, particularly in cases of high levels of alcohol use as seen in dependence. Furthermore, both systems also play a role in stress and anxiety, indicating that disruption of these systems may underlie long-term homeostatic dysregulation seen in alcohol use disorders...
March 11, 2018: Handbook of Experimental Pharmacology
Leon G Coleman, Fulton T Crews
Innate immune signaling is an important feature in the pathology of alcohol use disorders. Alcohol abuse causes persistent innate immune activation in the brain. This is seen in postmortem human alcoholic brain specimens, as well as in primate and rodent models of alcohol consumption. Further, in vitro models of alcohol exposure in neurons and glia also demonstrate innate immune activation. The activation of the innate immune system seems to be important in the development of alcohol use pathology, as anti-immune therapies reduce pathology and ethanol self-administration in rodent models...
March 3, 2018: Handbook of Experimental Pharmacology
Prosper N'Gouemo
Voltage-sensitive Ca2+ (CaV ) channels are the primary route of depolarization-induced Ca2+ entry in neurons and other excitable cells, leading to an increase in intracellular Ca2+ concentration ([Ca2+ ]i ). The resulting increase in [Ca2+ ]i activates a wide range of Ca2+ -dependent processes in neurons, including neurotransmitter release, gene transcription, activation of Ca2+ -dependent enzymes, and activation of certain K+ channels and chloride channels. In addition to their key roles under physiological conditions, CaV channels are also an important target of alcohol, and alcohol-induced changes in Ca2+ signaling can disturb neuronal homeostasis, Ca2+ -mediated gene transcription, and the function of neuronal circuits, leading to various neurological and/or neuropsychiatric symptoms and disorders, including alcohol withdrawal induced-seizures and alcoholism...
March 3, 2018: Handbook of Experimental Pharmacology
Markus R Meyer
This summarizing and descriptive review article is an update on previously published reviews. It covers English-written and PubMed-listed review articles and original studies published between May 2016 and November 2017 on the toxicokinetics of new psychoactive substances (NPS). Compounds covered include stimulants and entactogens, synthetic cannabinoids, tryptamines, phenethylamine and phencyclidine-like drugs, benzodiazepines, and opioids. First, an overview and discussion is provided on selected review articles followed by an overview and discussion on selected original studies...
February 24, 2018: Handbook of Experimental Pharmacology
Pierre-Hervé Luppi, Patrice Fort
In the present chapter, hypotheses on the mechanisms responsible for the genesis of the three vigilance states, namely, waking, non-rapid eye movement (non-REM) also called slow-wave sleep (SWS), and REM sleep also called paradoxical sleep (PS), are presented. A huge number of studies first indicate that waking is induced by the activation of multiple waking systems, including the serotonergic, noradrenergic, cholinergic, and hypocretin systems. At the onset of sleep, the SWS-active neurons would be activated by the circadian clock localized in the suprachiasmatic nucleus and a hypnogenic factor, adenosine, which progressively accumulates in the brain during waking...
February 24, 2018: Handbook of Experimental Pharmacology
Steven Molinarolo, Daniele Granata, Vincenzo Carnevale, Christopher A Ahern
Voltage-gated sodium channel (VGSC) beta (β) subunits have been called the "overachieving" auxiliary ion channel subunit. Indeed, these subunits regulate the trafficking of the sodium channel complex at the plasma membrane and simultaneously tune the voltage-dependent properties of the pore-forming alpha-subunit. It is now known that VGSC β-subunits are capable of similar modulation of multiple isoforms of related voltage-gated potassium channels, suggesting that their abilities extend into the broader voltage-gated channels...
February 21, 2018: Handbook of Experimental Pharmacology
Verginia C Cuzon Carlson
Alcohol (ethanol) is a widely used and abused drug with approximately 90% of adults over the age of 18 consuming alcohol at some point in their lifetime. Alcohol exerts its actions through multiple neurotransmitter systems within the brain, most notably the GABAergic and glutamatergic systems. Alcohol's actions on GABAergic and glutamatergic neurotransmission have been suggested to underlie the acute behavioral effects of ethanol. The striatum is the primary input nucleus of the basal ganglia that plays a role in motor and reward systems...
February 20, 2018: Handbook of Experimental Pharmacology
Robert J Bridges, Neil A Bradbury
The eukaryotic cell is organized into membrane-delineated compartments that are characterized by specific cadres of proteins sustaining biochemically distinct cellular processes. The appropriate subcellular localization of proteins is key to proper organelle function and provides a physiological context for cellular processes. Disruption of normal trafficking pathways for proteins is seen in several genetic diseases, where a protein's absence for a specific subcellular compartment leads to organelle disruption, and in the context of an individual, a disruption of normal physiology...
February 20, 2018: Handbook of Experimental Pharmacology
Susan Pyne, David R Adams, Nigel J Pyne
There is substantial evidence that the enzymes, sphingosine kinase 1 and 2, which catalyse the formation of the bioactive lipid sphingosine 1-phosphate, are involved in pathophysiological processes. In this chapter, we appraise the evidence that both enzymes are druggable and describe how isoform-specific inhibitors can be developed based on the plasticity of the sphingosine-binding site. This is contextualised with the effect of sphingosine kinase inhibitors in cancer, pulmonary hypertension, neurodegeneration, inflammation and sickling...
February 20, 2018: Handbook of Experimental Pharmacology
Colin H Peters, Mohammad-Reza Ghovanloo, Cynthia Gershome, Peter C Ruben
Changes in blood and tissue pH accompany physiological and pathophysiological conditions including exercise, cardiac ischemia, ischemic stroke, and cocaine ingestion. These conditions are known to trigger the symptoms of electrical diseases in patients carrying sodium channel mutations. Protons cause a diverse set of changes to sodium channel gating, which generally lead to decreases in the amplitude of the transient sodium current and increases in the fraction of non-inactivating channels that pass persistent currents...
February 20, 2018: Handbook of Experimental Pharmacology
Paul M Klenowski, Andrew R Tapper
Ethanol and nicotine can modulate the activity of several neurotransmitter systems and signalling pathways. Interactions between ethanol and nicotine can also occur via common molecular targets including nicotinic acetylcholine receptors (nAChRs). These effects can induce molecular and synaptic adaptations that over time, are consolidated in brain circuits that reinforce drug-seeking behavior, contribute to the development of withdrawal symptoms during abstinence and increase the susceptibility to relapse. This chapter will discuss the acute and chronic effects of ethanol and nicotine within the mesolimbic reward pathway and brain circuits involved in learning, memory, and withdrawal...
February 9, 2018: Handbook of Experimental Pharmacology
Reginald Cannady, Jennifer A Rinker, Sudarat Nimitvilai, John J Woodward, Patrick J Mulholland
Neural mechanisms underlying alcohol use disorder remain elusive, and this lack of understanding has slowed the development of efficacious treatment strategies for reducing relapse rates and prolonging abstinence. While synaptic adaptations produced by chronic alcohol exposure have been extensively characterized in a variety of brain regions, changes in intrinsic excitability of critical projection neurons are understudied. Accumulating evidence suggests that prolonged alcohol drinking and alcohol dependence produce plasticity of intrinsic excitability as measured by changes in evoked action potential firing and after-hyperpolarization amplitude...
January 28, 2018: Handbook of Experimental Pharmacology
Katrin Schrenk-Siemens, Corinna Rösseler, Angelika Lampert
Chronic pain patients are often left with insufficient treatment as the pathophysiology especially of neuropathic pain remains enigmatic. Recently, genetic variations in the genes of the voltage-gated sodium channels (Navs) were linked to inherited neuropathic pain syndromes, opening a research pathway to foster our understanding of the pathophysiology of neuropathic pain. More than 10 years ago, the rare, inherited pain syndrome erythromelalgia was linked to mutations in the subtype Nav1.7, and since then a plethora of mutations and genetic variations in this and other Nav genes were identified...
January 28, 2018: Handbook of Experimental Pharmacology
Adam Kim, Rebecca L McCullough, Kyle L Poulsen, Carlos Sanz-Garcia, Megan Sheehan, Abram B Stavitsky, Laura E Nagy
Both the innate and adaptive immune systems are critical for the maintenance of healthy liver function. Immune activity maintains the tolerogenic capacity of the liver, modulates hepatocellular response to various stresses, and orchestrates appropriate cellular repair and turnover. However, in response to heavy, chronic alcohol exposure, the finely tuned balance of pro- and anti-inflammatory functions in the liver is disrupted, leading to a state of chronic inflammation in the liver. Over time, this non-resolving inflammatory response contributes to the progression of alcoholic liver disease (ALD)...
January 28, 2018: Handbook of Experimental Pharmacology
Allyson L Schreiber, Nicholas W Gilpin
Alcohol use is pervasive in the United States. In the transition from nonhazardous drinking to hazardous drinking and alcohol use disorder, neuroadaptations occur within brain reward and brain stress systems. One brain signaling system that has received much attention in animal models of excessive alcohol drinking and alcohol dependence is corticotropin-releasing factor (CRF). The CRF system is composed of CRF, the urocortins, CRF-binding protein, and two receptors - CRF type 1 and CRF type 2. This review summarizes how acute, binge, and chronic alcohol dysregulates CRF signaling in hypothalamic and extra-hypothalamic brain regions and how this dysregulation may contribute to changes in alcohol reinforcement, excessive alcohol consumption, symptoms of negative affect during withdrawal, and alcohol relapse...
January 28, 2018: Handbook of Experimental Pharmacology
Marcos G Frank
The cellular mechanisms governing the expression, regulation, and function of sleep are not entirely understood. The traditional view is that these mechanisms are neuronal. An alternative view is that glial brain cells may play important roles in these processes. Their ubiquity in the central nervous system makes them well positioned to modulate neuronal circuits that gate sleep and wake. Their ability to respond to chemical neuronal signals suggests that they form feedback loops with neurons that may globally regulate neuronal activity...
January 28, 2018: Handbook of Experimental Pharmacology
Mark Egli
Animal models provide rapid, inexpensive assessments of an investigational drug's therapeutic potential. Ideally, they support the plausibility of therapeutic efficacy and provide a rationale for further investigation. Here, I discuss how the absence of clear effective-ineffective categories for alcohol use disorder (AUD) medications and biases in the clinical and preclinical literature affect the development of predictive preclinical alcohol dependence (AD) models. Invoking the analogical argument concept from the philosophy of science field, I discuss how models of excessive alcohol drinking support the plausibility of clinical pharmacotherapy effects...
January 28, 2018: Handbook of Experimental Pharmacology
Lea Wagmann, Hans H Maurer
Bioanalysis of new psychoactive substances (NPS) is very challenging due to the growing number of compounds with new chemical structures found on the drugs of abuse market. Screening, identification, and quantification in biosamples are needed in clinical and forensic toxicology settings, and these procedures are more challenging than the analysis of seized drug material because of extremely low concentrations encountered in biofluids but also due to diverse metabolic alterations of the parent compounds. This article focuses on bioanalytical single- and multi-analyte procedures applicable to a broad variety of NPS in various biomatrices, such as blood, urine, oral fluid, or hair...
January 28, 2018: Handbook of Experimental Pharmacology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"