Read by QxMD icon Read

Developmental Neuroscience

Hee Kang, Dong-Hee Choi, Su-Kang Kim, Jongmin Lee, Youn-Jung Kim
Environmental enrichment (EE) is a typical experimental method that promotes levels of novelty and complexity that enhance experience-dependent neuroplasticity and cognitive behavior function in laboratory animals. Early EE is associated with resilience in the face of later-life challenges. Since increased synaptic activity enhances endogenous neuronal antioxidant defenses, we hypothesized that long-term EE beginning at an early stage may alter the levels of oxidative stress. We investigated global protein expression and oxidative stress in hippocampal proteins from rats nurtured for a 6-month EE beginning in the prenatal period...
July 16, 2016: Developmental Neuroscience
Yael Barbie-Shoshani, Shai Shoham, Corina Bejar, Marta Weinstock
Stress during pregnancy can increase the incidence of emotional problems, learning and language difficulties in human infants and pre-adolescents. Most preclinical studies in rats that attempted to find experimental support for these observations were performed in adult male offspring, but the results are inconsistent. The aim of the current study was to examine the effect of prenatal stress on novel object recognition (NOR) and spatial learning and memory in the Morris water maze (MWM) of juvenile rats of both sexes...
July 2, 2016: Developmental Neuroscience
Ryan T Lacy, Russell W Brown, Amanda J Morgan, Charles F Mactutus, Steven B Harrod
In the USA, approximately 15% of women smoke tobacco cigarettes during pregnancy. In utero tobacco smoke exposure produces somatic growth deficits like intrauterine growth restriction and low birth weight in offspring, but it can also negatively influence neurodevelopmental outcomes in later stages of life, such as an increased incidence of obesity and drug abuse. Animal models demonstrate that prenatal nicotine (PN) alters the development of the mesocorticolimbic system, which is important for organizing goal-directed behavior...
June 11, 2016: Developmental Neuroscience
Xu Liu, Donald W Pfaff, Diany P Calderon, Inna Tabansky, Xin Wang, Yun Wang, Lee-Ming Kow
Many types of data have suggested that neurons in the nucleus gigantocellularis (NGC) in the medullary reticular formation are critically important for CNS arousal and behavioral responsiveness. To extend this topic to a developmental framework, whole-cell patch-recorded characteristics of NGC neurons in brainstem slices and measures of arousal-dependent locomotion of postnatal day 3 (P3) to P6 mouse pups were measured and compared. These neuronal characteristics developed in an orderly, statistically significant monotonic manner over the course of P3-P6: (1) proportion of neurons capable of firing action potential (AP) trains, (2) AP amplitude, (3) AP threshold, (4) amplitude of inward and outward currents, (5) amplitude of negative peak currents, and (6) steady state currents (in I-V plot)...
2016: Developmental Neuroscience
Jean M Lauder
No abstract text is available yet for this article.
2016: Developmental Neuroscience
Thomas W Bastian, William C von Hohenberg, Daniel J Mickelson, Lorene M Lanier, Michael K Georgieff
Iron deficiency (ID), with and without anemia, affects an estimated 2 billion people worldwide. ID is particularly deleterious during early-life brain development, leading to long-term neurological impairments including deficits in hippocampus-mediated learning and memory. Neonatal rats with fetal/neonatal ID anemia (IDA) have shorter hippocampal CA1 apical dendrites with disorganized branching. ID-induced dendritic structural abnormalities persist into adulthood despite normalization of the iron status. However, the specific developmental effects of neuronal iron loss on hippocampal neuron dendrite growth and branching are unknown...
2016: Developmental Neuroscience
Jennifer K Lee, Bing Wang, Michael Reyes, Jillian S Armstrong, Ewa Kulikowicz, Polan T Santos, Jeong-Hoo Lee, Raymond C Koehler, Lee J Martin
Therapeutic hypothermia provides incomplete neuroprotection after hypoxia-ischemia (HI)-induced brain injury in neonates. We previously showed that cortical neuron and white matter apoptosis are promoted by hypothermia and early rewarming in a piglet model of HI. The unfolded protein response (UPR) may be one of the potential mediators of this cell death. Here, neonatal piglets underwent HI or sham surgery followed by 29 h of normothermia, 2 h of normothermia + 27 h of hypothermia or 18 h of hypothermia + rewarming...
2016: Developmental Neuroscience
Armin Yazdani, Zehra Khoja, Aaron Johnstone, Laura Dale, Emmanouil Rampakakis, Pia Wintermark
Term asphyxiated newborns remain at risk of developing brain injury despite available neuropreventive therapies such as hypothermia. Neurorestorative treatments may be an alternative. This study investigated the effect of sildenafil on brain injury induced by neonatal hypoxia-ischemia (HI) at term-equivalent age. Neonatal HI was induced in male Long-Evans rat pups at postnatal day 10 (P10) by left common carotid ligation followed by a 2-hour exposure to 8% oxygen; sham-operated rat pups served as the control...
2016: Developmental Neuroscience
Pablo Vázquez-Borsetti, Elena Peña, Catalina Rico, Mariana Noto, Nathalie Miller, Diego Cohon, Juan Manuel Acosta, Mariano Ibarra, Fabián C Loidl
Obstetrical complications of perinatal asphyxia (PA) can often induce lesions that, in the long-term, manifest as schizophrenia. A deterioration of the medial prefrontal cortex (mPFC) and a reduction in the number of GABAergic neurons are commonly observed in the pathophysiology of schizophrenia. In this study, we investigated the link between PA, reelin and calbindin diminution and psychiatric diseases that involve social interaction deficits. This was achieved by observing the effect of 19 min of asphyxia on both subpopulations of GABAergic neurons...
2016: Developmental Neuroscience
Bridgette D Semple, Raha Sadjadi, Jaclyn Carlson, Yiran Chen, Duan Xu, Donna M Ferriero, Linda J Noble-Haeusslein
Recent evidence supports the hypothesis that repetitive mild traumatic brain injuries (rmTBIs) culminate in neurological impairments and chronic neurodegeneration, which have wide-ranging implications for patient management and return-to-play decisions for athletes. Adolescents show a high prevalence of sports-related head injuries and may be particularly vulnerable to rmTBIs due to ongoing brain maturation. However, it remains unclear whether rmTBIs, below the threshold for acute neuronal injury or symptomology, influence long-term outcomes...
2016: Developmental Neuroscience
Rachel K Rowe, Jenna M Ziebell, Jordan L Harrison, L Matthew Law, P David Adelson, Jonathan Lifshitz
Development and aging are influenced by external factors with the potential to impact health throughout the life span. Traumatic brain injury (TBI) can initiate and sustain a lifetime of physical and mental health symptoms. Over 1.7 million TBIs occur annually in the USA alone, with epidemiology suggesting a higher incidence for young age groups. Additionally, increasing life spans mean more years to age with TBI. While there is ongoing research of experimental pediatric and adult TBI, few studies to date have incorporated animal models of pediatric, adolescent, and adult TBI to understand the role of age at injury across the life span...
2016: Developmental Neuroscience
Fu-Sun Lo, Reha S Erzurumlu
The whisker-sensory trigeminal central pathway of rodents is an established model for studies of activity-dependent neural plasticity. The first relay station of the pathway is the trigeminal principal nucleus (PrV), the ventral part of which receives sensory inputs mainly from the infraorbital branch of the maxillary trigeminal nerve (ION). Whisker-sensory afferents play an important role in the development of the morphological and physiological properties of PrV neurons. In neonates, deafferentation by ION transection leads to the disruption of whisker-related neural patterns (barrelettes) and cell death within a specific time window (critical period), as revealed by morphological studies...
2016: Developmental Neuroscience
Bhupesh Patel, Saroj Kumar Das, Manorama Patri
Humans are exposed to polycyclic aromatic hydrocarbons (PAHs) by ingestion of contaminated food and water. Prenatal exposure to benzo[a]pyrene (B[a]P) like PAHs through the placental barrier and neonatal exposure by breast milk and the environment may affect early brain development. In the present study, single intracisternal administration of B[a]P (0.2 and 2.0 µg/kg body weight) to male Wistar rat pups at postnatal day 5 (PND5) was carried out to study its specific effect on neonatal brain development and its consequences at PND30...
2016: Developmental Neuroscience
Simon N Katner, Bethany S Neal-Beliveau, Eric A Engleman
Methamphetamine (MAP) addiction is substantially prevalent in today's society, resulting in thousands of deaths and costing billions of dollars annually. Despite the potential deleterious consequences, few studies have examined the long-term effects of embryonic MAP exposure. Using the invertebrate nematode Caenorhabditis elegans allows for a controlled analysis of behavioral and neurochemical changes due to early developmental drug exposure. The objective of the current study was to determine the long-term behavioral and neurochemical effects of embryonic exposure to MAP in C...
2016: Developmental Neuroscience
Lara C Foland-Ross, Negin Behzadian, Joelle LeMoult, Ian H Gotlib
BACKGROUND: A growing body of research has demonstrated that having a mother with a history of major depressive disorder (MDD) is one of the strongest predictors of depression in adolescent offspring. Few studies, however, have assessed neural markers of this increased risk for depression, or examined whether risk-related anomalies in adolescents at maternal risk for depression are related to neural abnormalities in their depressed mothers. We addressed these questions by examining concordance in brain structure in two groups of participants: mothers with a history of depression and their never-depressed daughters, and never-depressed mothers and their never-depressed daughters...
2016: Developmental Neuroscience
Randall William Treffy, David Collins, Natalia Hoshino, Son Ton, Gennadiy Aleksandrovich Katsevman, Michael Oleksiak, Elizabeth Marie Runge, David Cho, Matthew Russo, Andrej Spec, Jennifer Gomulka, Mark Henkemeyer, Michael William Rochlin
The innervation of taste buds is an excellent model system for studying the guidance of axons during targeting because of their discrete nature and the high fidelity of innervation. The pregustatory epithelium of fungiform papillae is known to secrete diffusible axon guidance cues such as BDNF and Sema3A that attract and repel, respectively, geniculate ganglion axons during targeting, but diffusible factors alone are unlikely to explain how taste axon terminals are restricted to their territories within the taste bud...
2016: Developmental Neuroscience
Jennifer A Honeycutt, Kevin M Keary Iii, Vanessa M Kania, James J Chrobak
Local circuit GABAergic neurons, including parvalbumin (PV)-containing basket cells, likely play a key role in the development, physiology, and pathology of neocortical circuits. Regionally selective and well-defined decreases in PV have been described in human postmortem schizophrenic brain tissue in both the hippocampus and prefrontal cortex. Animal models of schizophreniform dysfunction following acute and/or chronic ketamine treatment have also demonstrated decreases in PV expression. Conflicting reports with respect to PV immunoreactivity following acute and chronic ketamine treatments in rodents question the utility of using PV as a biological marker of pathology-related dysfunction...
2016: Developmental Neuroscience
Markus Breu, Jiangyang Zhang, Michael Porambo, Mikhail V Pletnikov, Katharina Goeral, Mihir Kakara, Michael V Johnston, Ali Fatemi
BACKGROUND: Neonatal white matter injury (NWMI) is the leading cause of cerebral palsy in prematurely born children. In order to develop a test bed for therapeutics, we recently reported a mouse model of NWMI by using a modified Rice-Vannucci model of neonatal ischemia on postnatal day 5 (P5) in CD-1 mice. We have previously shown that these mice illustrate initial neuroinflammation and oligodendroglial differentiation arrest followed by long-term dysmyelination, periventricular astrogliosis and axonal injury, resembling human NWMI...
2016: Developmental Neuroscience
Harleen Hehar, Irene Ma, Richelle Mychasiuk
Early developmental processes, such as metabolic programming, can provide cues to an organism, which allow it to make modifications that are predicted to be beneficial for survival. Similarly, social play has a multifaceted role in promoting survival and fitness of animals. Play is a complex behavior that is greatly influenced by motivational and reward circuits, as well as the energy reserves and metabolism of an organism. This study examined the association between metabolic programming and juvenile play behavior in an effort to further elucidate insight into the consequences that early adaptions have on developmental trajectories...
2016: Developmental Neuroscience
Raghavendra Rao, Kathleen Ennis, Eugena P Mitchell, Phu V Tran, Jonathan C Gewirtz
Recurrent hypoglycemia is common in infants and children. In developing rat models, recurrent moderate hypoglycemia leads to neuronal injury in the medial prefrontal cortex. To understand the effects beyond neuronal injury, 3-week-old male rats were subjected to 5 episodes of moderate hypoglycemia (blood glucose concentration, approx. 30 mg/dl for 90 min) once daily from postnatal day 24 to 28. Neuronal injury was determined using Fluoro-Jade B histochemistry on postnatal day 29. The effects on brain-derived neurotrophic factor (BDNF) and its cognate receptor, tyrosine kinase receptor B (TrkB) expression, which is critical for prefrontal cortex development, were determined on postnatal day 29 and at adulthood...
2016: Developmental Neuroscience
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"