Read by QxMD icon Read


Azadeh Akhtari-Zavareh, Marc De Graef, Karen L Kavanagh
A new analytical model is developed for the magnetic phase shift of uniformly magnetized nanowires with ideal cylindrical geometry. The model is applied to experimental data from off-axis electron holography measurements of the phase shift of CoFeB nanowires, and the saturation induction of a selected wire, as well as its radius, aspect ratio, position and orientation, is determined by fitting the model parameters. The saturation induction value of 1.7T of the CoFeB nanowire is found to be similar, to be within the measurement error, to values reported in the literature...
October 4, 2016: Ultramicroscopy
Christian Schou Oxvig, Thomas Arildsen, Torben Larsen
The use of compressed sensing in atomic force microscopy (AFM) can potentially speed-up image acquisition, lower probe-specimen interaction, or enable super resolution imaging. The idea in compressed sensing for AFM is to spatially undersample the specimen, i.e. only acquire a small fraction of the full image of it, and then use advanced computational techniques to reconstruct the remaining part of the image whenever this is possible. Our initial experiments have shown that it is possible to leverage inherent structure in acquired AFM images to improve image reconstruction...
September 21, 2016: Ultramicroscopy
Jorge Rodriguez-Ramos, Alma P Perrino, Ricardo Garcia
The volume of a protein can be estimated from its molecular weight. This approach has also been applied in force microscopy experiments. Two factors contribute to the determination of the volume from a force microscope image, the applied force and the tip radius. Those factors act in opposite directions. Here, we demonstrate that in the optimum conditions to image a protein, the apparent volume deduced from an AFM image overestimates the real protein volume. The lateral broadening due to the tip finite size, makes the simulated volume to exceed the real protein volume value, while the force applied by the tip tends to decrease the measured volume...
September 21, 2016: Ultramicroscopy
Heebum Chae, Gwangseok Hwang, Ohmyong Kwon
With the vigorous development of new nanodevices and nanomaterials, improvements in the quantitation and resolution of the measurement of nanoscale energy transport/conversion phenomena have become increasingly important. Although several new advanced methods for scanning thermal microscopy (SThM) have been developed to meet these needs, such methods require a drastic enhancement of SThM probe performance. In this study, by taking advantage of the characteristics of micromechanical structures where their mechanical stability is maintained even when the film that composes the structures becomes extremely thin, we develop a new design of SThM probe whose tip is made of ultra-thin SiO2 film (~100nm), fabricate the SThM probes, and demonstrate experimentally that the tip radius, thermal time constant, and thermal sensitivity of the probe are all improved...
September 20, 2016: Ultramicroscopy
Sebastian Schneider, Darius Pohl, Stefan Löffler, Ján Rusz, Deepa Kasinathan, Peter Schattschneider, Ludwig Schultz, Bernd Rellinghaus
Electron energy-loss magnetic chiral dichroism (EMCD) allows for the quantification of magnetic properties of materials at the nanometer scale. It is shown that with the support of simulations that help to identify the optimal conditions for a successful experiment and upon implementing measurement routines that effectively reduce the noise floor, EMCD measurements can be pushed towards quantitative magnetic measurements even on individual nanoparticles. With this approach, the ratio of orbital to spin magnetic moments for the Fe atoms in a single L10 ordered FePt nanoparticle is determined to be ml/ms=0...
September 20, 2016: Ultramicroscopy
S Fernandez Bordín, S Limandri, J M Ranalli, G Castellano
The spatial resolution of the electron backscatter diffraction signal is explored by Monte Carlo simulation for the sigma phase in steel at a typical instrumental set-up. In order to estimate the active volume corresponding to the diffracted electrons, the fraction of the backscattered electrons contributing to the diffraction signal was inferred by extrapolating the Kikuchi pattern contrast measured by other authors, as a function of the diffracted electron energy. In the resulting estimation, the contribution of the intrinsic incident beam size and the software capability to deconvolve patterns were included...
September 20, 2016: Ultramicroscopy
Leo Polak, Rinke J Wijngaarden
Kelvin Probe Force Microscopy (KPFM) on samples with rough surface topography can be hindered by topography correlated artifacts. We show that, with the proper experimental configuration and using homogeneously metal coated probes, we are able to obtain amplitude modulation (AM) KPFM results on a gold coated sample with rough topography that are free from such artifacts. By inducing tip inhomogeneity through contact with the sample, clear potential variations appear in the KPFM image, which correlate with the surface topography and, thus, are probe induced artifacts...
September 20, 2016: Ultramicroscopy
Andrzej Sikora, Aleksander Rodak, Olgierd Unold, Petr Klapetek
In this paper a novel approach for the practical utilization of the 2D wavelet filter in terms of the artifacts removal from atomic force microscopy measurements results is presented. The utilization of additional data such as summary photodiode signal map is implemented in terms of the identification of the areas requiring the data processing, filtering settings optimization and the verification of the process performance. Such an approach allows to perform the filtering parameters adjustment by average user, while the straightforward method requires an expertise in this field...
September 20, 2016: Ultramicroscopy
Wei-Yu Chang, Fu-Rong Chen
A tabletop scanning electron microscope (SEM) utilizes permanent magnets as condenser lenses to minimize its size, but this sacrifices the tunability of condenser lenses such that a tabletop system can only be operated with a fixed accelerating voltage. In contrast, the traditional condenser lens utilizes an electromagnetic coil to adjust the optical properties, but the size of the electromagnetic lens is inevitably larger. Here, we propose a tunable condenser lens for a tabletop SEM that uses a combination of permanent magnets and electromagnetic coils...
September 19, 2016: Ultramicroscopy
Q Wan, R C Masters, D Lidzey, K J Abrams, M Dapor, R A Plenderleith, S Rimmer, F Claeyssens, C Rodenburg
Recently developed detectors can deliver high resolution and high contrast images of nanostructured carbon based materials in low voltage scanning electron microscopes (LVSEM) with beam deceleration. Monte Carlo Simulations are also used to predict under which exact imaging conditions purely compositional contrast can be obtained and optimised. This allows the prediction of the electron signal intensity in angle selective conditions for back-scattered electron (BSE) imaging in LVSEM and compares it to experimental signals...
September 15, 2016: Ultramicroscopy
Hao Yang, Peter Ercius, Peter D Nellist, Colin Ophus
The ability to image light elements in both crystalline and noncrystalline materials at near atomic resolution with an enhanced contrast is highly advantageous to understand the structure and properties of a wide range of beam sensitive materials including biological specimens and molecular hetero-structures. This requires the imaging system to have an efficient phase contrast transfer at both low and high spatial frequencies. In this work we introduce a new phase contrast imaging method in a scanning transmission electron microscope (STEM) using a pre-specimen phase plate in the probe forming aperture, combined with a fast pixelated detector to record diffraction patterns at every probe position, and phase reconstruction using ptychography...
September 14, 2016: Ultramicroscopy
R Aveyard, B Rieger
The detection and quantification of fabrication defects is vital to the ongoing miniaturization of integrated circuits. The atomic resolution of HAADF-STEM combined with the chemical sensitivity of EDS could provide the means by which this is achieved for the next generation of semiconductor devices. To realize this, however, a streamlined acquisition and analysis procedure must first be developed. Here, we report the simulation of a HAADF-STEM and EDS tilt-series dataset of a PMOS finFET device which will be used as a testbed for such a development...
September 13, 2016: Ultramicroscopy
Pei Zhang, Zhe Wang, J H Perepezko, P M Voyles
The elastic and inelastic mean free paths of three metallic glass alloys, Ni60Nb40, Pd82Si18 and Ni80P20, have been measured from focused ion beam prepared thin samples with measured thickness gradients. The elastic/inelastic mean free paths of the three alloys are 35±0.5/97±3, 26±0.5/148±3 and 40±0.5/129±2.5nm, respectively. Elastic mean free paths predicted from atomic scattering cross sections consistently underestimate the experimental data. A model based on the Wentzel atomic model was developed and the fit to available data is in much better agreement with experiments, with a maximum deviation of ~4nm...
September 13, 2016: Ultramicroscopy
J P Liebig, M Göken, G Richter, M Mačković, T Przybilla, E Spiecker, O N Pierron, B Merle
A new method for the preparation of freestanding thin film samples for mechanical testing in transmission electron microscopes is presented. It is based on a combination of focused ion beam (FIB) milling and electron-beam-assisted etching with xenon difluoride (XeF2) precursor gas. The use of the FIB allows for the target preparation of microstructural defects and enables well-defined sample geometries which can be easily adapted in order to meet the requirements of various testing setups. In contrast to existing FIB-based preparation approaches, the area of interest is never exposed to ion beam irradiation which preserves a pristine microstructure...
September 12, 2016: Ultramicroscopy
Pei Zhang, Li He, Matthew F Besser, Ze Liu, Jan Schroers, Matthew J Kramer, Paul M Voyles
Electron correlation microscopy (ECM) is a way to measure structural relaxation times, τ, of liquids with nanometer-scale spatial resolution using coherent electron scattering equivalent of photon correlation spectroscopy. We have applied ECM with a 3.5nm diameter probe to Pt57.5Cu14.7Ni5.3P22.5 amorphous nanorods and Pd40Ni40P20 bulk metallic glass (BMG) heated inside the STEM into the supercooled liquid region. These data demonstrate that the ECM technique is limited by the characteristics of the time series, which must be at least 40τ to obtain a well-converged correlation function g2(t), and the time per frame, which must be less than 0...
September 8, 2016: Ultramicroscopy
A De Backer, K H W van den Bos, W Van den Broek, J Sijbers, S Van Aert
An efficient model-based estimation algorithm is introduced to quantify the atomic column positions and intensities from atomic resolution (scanning) transmission electron microscopy ((S)TEM) images. This algorithm uses the least squares estimator on image segments containing individual columns fully accounting for overlap between neighbouring columns, enabling the analysis of a large field of view. For this algorithm, the accuracy and precision with which measurements for the atomic column positions and scattering cross-sections from annular dark field (ADF) STEM images can be estimated, has been investigated...
August 31, 2016: Ultramicroscopy
A P Konijnenberg, W M J Coene, S F Pereira, H P Urbach
In this article we combine the well-known Ptychographical Iterative Engine (PIE) with the Hybrid Input-Output (HIO) algorithm. The important insight is that the HIO feedback function should be kept strictly separate from the reconstructed object, which is done by introducing a separate feedback function per probe position. We have also combined HIO with floating PIE (fPIE) and extended PIE (ePIE). Simulations indicate that the combined algorithm performs significantly better in many situations. Although we have limited our research to a combination with HIO, the same insight can be used to combine ptychographical algorithms with any phase retrieval algorithm that uses a feedback function...
August 31, 2016: Ultramicroscopy
Hongye Zhang, Zhanwei Liu, Huihui Wen, Huimin Xie, Chao Liu
Geometrical phase analysis (GPA) is typically a powerful tool to investigate the deformation in high resolution transmission electron microscopy images and has been used in various fields. The traditional GPA method using the fast Fourier transform, referred to as global-GPA (G-GPA) here, is based on the relationship between the displacement and the phase difference. In this paper, a subset-GPA (S-GPA) is introduced for further improvement. The S-GPA performs the windowed Fourier transform block by block in the image...
August 31, 2016: Ultramicroscopy
Michael Foerster, Jordi Prat, Valenti Massana, Nahikari Gonzalez, Abel Fontsere, Bernat Molas, Oscar Matilla, Eric Pellegrin, Lucia Aballe
A variety of custom-built sample holders offer users a wide range of non-standard measurements at the ALBA synchrotron PhotoEmission Electron Microscope (PEEM) experimental station. Some of the salient features are: an ultrahigh vacuum (UHV) suitcase compatible with many offline deposition and characterization systems, built-in electromagnets for uni- or biaxial in-plane (IP) and out-of-plane (OOP) fields, as well as the combination of magnetic fields with electric fields or current injection. Electronics providing a synchronized sinusoidal signal for sample excitation enable time-resolved measurements at the 500MHz storage ring RF frequency...
August 30, 2016: Ultramicroscopy
Bart Goris, Maria Meledina, Stuart Turner, Zhichao Zhong, K Joost Batenburg, Sara Bals
Electron tomography is a powerful technique for the 3D characterization of the morphology of nanostructures. Nevertheless, resolving the chemical composition of complex nanostructures in 3D remains challenging and the number of studies in which electron energy loss spectroscopy (EELS) is combined with tomography is limited. During the last decade, dedicated reconstruction algorithms have been developed for HAADF-STEM tomography using prior knowledge about the investigated sample. Here, we will use the prior knowledge that the experimental spectrum of each reconstructed voxel is a linear combination of a well-known set of references spectra in a so-called direct spectroscopic tomography technique...
August 30, 2016: Ultramicroscopy
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"