Read by QxMD icon Read

Frontiers in Neuroendocrinology

Ilia N Karatsoreos
"Stress is complicated". A phrase uttered by many a stress researcher. This is true, from the vast array of stimuli considered "stressors" to the interactive and hormetic nature of the molecular, cellular, endocrine, and behavioral responses generated by such stressors. This commentary takes the position that stress researchers are poised to make even bigger contributions if they begin to shift from investigating the myriad effects of stress on brain and body, and to refocus a larger part of our efforts on more in-depth investigations of common themes in stress biology, with the goal of uncovering potential "universal principles" of stress that may help us better interpret the findings at higher levels of analysis, and provide a structured approach to help breach the next frontiers of stress research...
February 19, 2018: Frontiers in Neuroendocrinology
M Bedos, W Portillo, R G Paredes
Different conditions induce proliferation, migration and integration of new neurons in the adult brain. This process of neurogenesis is a clear example of long lasting plastic changes in the brain of different species. Sexual behavior is a motivated behavior that is crucial for the survival of the species, but an individual can spend all his life without displaying sexual behavior. In the present review, we briefly describe some of the effects of pheromones on neurogenesis. We review in detail studies describing the effects of sexual behavior in both males and females on proliferation, migration and integration of new cells and neurons...
February 10, 2018: Frontiers in Neuroendocrinology
E R de Kloet, O C Meijer, A F de Nicola, R H de Rijk, M Joëls
Bruce McEwen's discovery of receptors for corticosterone in the rat hippocampus introduced higher brain circuits in the neuroendocrinology of stress. Subsequently, these receptors were identified as mineralocorticoid receptors (MRs) that are involved in appraisal processes, choice of coping style, encoding and retrieval. The MR-mediated actions on cognition are complemented by slower actions via glucocorticoid receptors (GRs) on contextualization, rationalization and memory storage of the experience. These sequential phases in cognitive performance depend on synaptic metaplasticity that is regulated by coordinate MR- and GR activation...
February 8, 2018: Frontiers in Neuroendocrinology
J Bryce Ortiz, Cheryl D Conrad
Chronic stress results in functional and structural changes to the brain and especially the hippocampus. Decades of research have provided insights into the mechanisms by which chronic stress impairs hippocampal-mediated cognition and the corresponding reduction of hippocampal CA3 apical dendritic complexity. Yet, when chronic stress ends and time passes, which we refer to as a "post-stress rest period," hippocampal-mediated spatial memory deficits begin to improve and CA3 apical dendritic arbors increase in complexity...
February 8, 2018: Frontiers in Neuroendocrinology
Sonia J Lupien, Robert-Paul Juster, Catherine Raymond, Marie-France Marin
For the last five decades, science has managed to delineate the mechanisms by which stress hormones can impact on the human brain. Receptors for glucocorticoids are found in the hippocampus, amygdala and frontal cortex, three brain regions involved in memory processing and emotional regulation. Studies have shown that chronic exposure to stress is associated with reduced volume of the hippocampus and that chronic stress can modulate volumes of both the amygdala and frontal cortex, suggesting neurotoxic effects of stress hormones on the brain...
February 5, 2018: Frontiers in Neuroendocrinology
Heather A Cameron, Timothy J Schoenfeld
Unpredictable aversive experiences, or stressors, lead to changes in depression- and anxiety-related behavior and to changes in hippocampal structure including decreases in adult neurogenesis, granule cell and pyramidal cell dendritic morphology, and volume. Here we review the relationship between these behavioral and structural changes and discuss the possibility that these changes may be largely adaptive. Specifically, we suggest that new neurons in the dentate gyrus enhance behavioral adaptability to changes in the environment, biasing behavior in novel situations based on previous experience with stress...
February 5, 2018: Frontiers in Neuroendocrinology
A M Magariños, S M Schaafsma, D W Pfaff
Impacts of steroid stress hormones on the brain have provided multiple opportunities for linking specific molecular phenomena to behavioral state. The negative impacts of stress on female reproductive biological processes have been documented thoroughly at the endocrine and behavioral levels. More recently, a '3-hit' theory of autism has identified early stress as one of the hits. The multiple biochemical effects of endotoxin (lipopolysaccharide, LPS) indicated that it would serve as a powerful maternal immune activator...
February 2, 2018: Frontiers in Neuroendocrinology
Martin Picard, Bruce S McEwen, Elissa Epel, Carmen Sandi
Energy is required to sustain life and enable stress adaptation. At the cellular level, energy is largely derived from mitochondria - unique multifunctional organelles with their own genome. Four main elements connect mitochondria to stress: 1) Energy is required at the molecular, (epi)genetic, cellular, organ, and systemic levels to sustain components of stress responses; 2) Glucocorticoids and other steroid hormones are produced and metabolized by mitochondria; 3) Reciprocally, mitochondria functionally respond to neuroendocrine and metabolic stress mediators; and 4) Experimentally manipulating mitochondrial functions alters physiological and behavioral responses to psychological stress...
January 12, 2018: Frontiers in Neuroendocrinology
Jennifer R Rainville, Mariya Tsyglakova, Georgia E Hodes
Certain mood disorders and autoimmune diseases are predominately female diseases but we do not know why. Here, we explore the relationship between depression and the immune system from a sex-based perspective. This review characterizes sex differences in the immune system in health and disease. We explore the contribution of gonadal and stress hormones to immune function at the cellular and molecular level in the brain and body. We propose hormonal and genetic sex specific immune mechanisms that may contribute to the etiology of mood disorders...
December 27, 2017: Frontiers in Neuroendocrinology
Olivia Le Moëne, Anders Ågmo
Sexual attraction has two components: Emission of sexually attractive stimuli and responsiveness to these stimuli. In rodents, olfactory stimuli are necessary but not sufficient for attraction. We argue that body odors are far superior to odors from excreta (urine, feces) as sexual attractants. Body odors are produced by sebaceous glands all over the body surface and in specialized glands. In primates, visual stimuli, for example the sexual skin, are more important than olfactory. The role of gonadal hormones for the production of and responsiveness to odorants is well established...
December 26, 2017: Frontiers in Neuroendocrinology
Robert L Spencer, Lauren E Chun, Matthew J Hartsock, Elizabeth R Woodruff
Glucocorticoid hormones are a powerful mammalian systemic hormonal signal that exerts regulatory effects on almost every cell and system of the body. Glucocorticoids act in a circadian and stress-directed manner to aid in adaptation to an ever-changing environment. Circadian glucocorticoid secretion provides for a daily waxing and waning influence on target cell function. In addition, the daily circadian peak of glucocorticoid secretion serves as a timing signal that helps entrain intrinsic molecular clock phase in tissue cells distributed throughout the body...
December 26, 2017: Frontiers in Neuroendocrinology
Russell D Romeo
As adolescents transition from childhood to adulthood, many physiological and neurobehavioral changes occur. Shifts in neuroendocrine function are one such change, including the hormonal systems that respond to stressors. This review will focus on these hormonal changes, with a particular emphasis on the pubertal and adolescent maturation of the hypothalamic-pituitary-adrenal axis. Furthermore, this review will concentrate on studies using animal models, as these model systems have contributed a great deal to our mechanistic understanding of how factors such as sex and experience with stress shape hormonal reactivity during development...
December 21, 2017: Frontiers in Neuroendocrinology
Laura A Forney, Kirsten P Stone, Desiree Wanders, Thomas W Gettys
Dietary methionine restriction (MR) is implemented using a semi-purified diet that reduces methionine by ∼80% and eliminates dietary cysteine. Within hours of its introduction, dietary MR initiates coordinated series of transcriptional programs and physiological responses that include increased energy intake and expenditure, decreased adiposity, enhanced insulin sensitivity, and reduction in circulating and tissue lipids. Significant progress has been made in cataloguing the physiological responses to MR in males but not females, but identities of the sensing and communication networks that orchestrate these responses remain poorly understood...
December 21, 2017: Frontiers in Neuroendocrinology
Attila Zsarnovszky, David Kiss, Gergely Jocsak, Gabor Nemeth, Istvan Toth, Tamas L Horvath
Although the effects of phytoestrogens on brain function is widely unknown, they are often regarded as "natural" and thus as harmless. However, the effects of phytoestrogens or environmental pollutants on brain function is underestimated. Estrogen (17beta-estradiol, E2) and thyroid hormones (THs) play pivotal roles in brain development. In the mature brain, these hormones regulate metabolism on cellular and organismal levels. Thus, E2 and THs do not only regulate the energy metabolism of the entire organism, but simultaneously also regulate important homeostatic parameters of neurons and glia in the CNS...
January 2018: Frontiers in Neuroendocrinology
M Manfredi-Lozano, J Roa, M Tena-Sempere
Albeit essential for perpetuation of species, reproduction is an energy-demanding function that can be adjusted to body metabolic status. Reproductive maturation and function can be suppressed in conditions of energy deficit, but can be altered also in situations of persistent energy excess, e.g., morbid obesity. This metabolic-reproductive integration, of considerable pathophysiological relevance to explain different forms of perturbed puberty and sub/infertility, is implemented by the concerted action of numerous central and peripheral regulators, which impinge at different levels of the hypothalamic-pituitary-gonadal (HPG) axis, permitting a tight fit between nutritional/energy status and gonadal function...
January 2018: Frontiers in Neuroendocrinology
Julie A Chowen, Pilar Argente-Arizón, Alejandra Freire-Regatillo, Jesús Argente
Males and females have distinct propensities to develop obesity and its related comorbidities, partially due to gonadal steroids. There are sex differences in hypothalamic neuronal circuits, as well as in astrocytes, that participate in metabolic control and the development of obesity-associated complications. Astrocytes are involved in nutrient transport and metabolism, glucose sensing, synaptic remodeling and modulation of neuronal signaling. They express receptors for metabolic hormones and mediate effects of these metabolic signals on neurons, with astrogliosis occurring in response to high fat diet and excess weight gain...
January 2018: Frontiers in Neuroendocrinology
Victoria A Macht, Lawrence P Reagan
The development of the organism is a critical variable which influences the magnitude, duration, and reversibility of the effects of chronic stress. Such factors are relevant to the prefrontal cortex (PFC), as this brain region is the last to mature, the first to decline, and is highly stress-sensitive. Therefore, this review will examine the intersection between the nervous system and immune system at glutamatergic synapses in the PFC across three developmental periods: adolescence, adulthood, and aging. Glutamatergic synapses are tightly juxtaposed with microglia and astrocytes, and each of these cell types exhibits their own developmental trajectory...
December 16, 2017: Frontiers in Neuroendocrinology
R C Melcangi, G C Panzica
No abstract text is available yet for this article.
November 13, 2017: Frontiers in Neuroendocrinology
Bruce S McEwen
The brain is the central organ of stress and adaptation to stress that perceives and determines what is threatening, as well as the behavioral and physiological responses to the stressor, and it does so somewhat differently in males and females. The expression of steroid hormone receptors throughout the brain has broadened the definition of 'neuroendocrinology' to include the reciprocal communication between the entire brain and body via hormonal and neural pathways. Mediated in part via systemic hormonal influences, the adult and developing brain possess remarkable structural and functional plasticity in response to stress, including neuronal replacement, dendritic remodeling, and synapse turnover...
November 10, 2017: Frontiers in Neuroendocrinology
Morgan L Sherer, Caitlin K Posillico, Jaclyn M Schwarz
Pregnancy is associated with a number of significant changes in maternal physiology. Perhaps one of the more notable changes is the significant alteration in immune function that occurs during pregnancy. This change in immune function is necessary to support a successful pregnancy, but also creates a unique period of life during which a female is susceptible to disease and, as we'll speculate here, may also contribute to mental health disorders associated with pregnancy and the postpartum period. Here, we review the known changes in peripheral immune function that occur during pregnancy and the postpartum period, while highlighting the impact of hormones during these times on immune function, brain or neural function, as well as behavior...
October 27, 2017: Frontiers in Neuroendocrinology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"