journal
MENU ▼
Read by QxMD icon Read
search

Biochemical Society Transactions

journal
https://www.readbyqxmd.com/read/28202682/protein-s-palmitoylation-in-cellular-differentiation
#1
REVIEW
Mingzi M Zhang, Howard C Hang
Reversible protein S-palmitoylation confers spatiotemporal control of protein function by modulating protein stability, trafficking and activity, as well as protein-protein and membrane-protein associations. Enabled by technological advances, global studies revealed S-palmitoylation to be an important and pervasive posttranslational modification in eukaryotes with the potential to coordinate diverse biological processes as cells transition from one state to another. Here, we review the strategies and tools to analyze in vivo protein palmitoylation and interrogate the functions of the enzymes that put on and take off palmitate from proteins...
February 8, 2017: Biochemical Society Transactions
https://www.readbyqxmd.com/read/28202681/components-of-the-mitochondrial-camp-signalosome
#2
REVIEW
Stefania Monterisi, Manuela Zaccolo
3'-5'-Cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) signalling is activated by different extracellular stimuli and mediates many diverse processes within the same cell. It is now well established that in order to translate into the appropriate cellular function multiple extracellular inputs, which may act simultaneously on the same cell, the cAMP/PKA signalling pathway is compartmentalised. Multimolecular complexes are organised at specific subcellular sites to generate spatially confined signalosomes, which include effectors, modulators and targets of the pathway...
February 8, 2017: Biochemical Society Transactions
https://www.readbyqxmd.com/read/28202680/cross-talk-between-lrrk2-and-pka-implication-for-parkinson-s-disease
#3
REVIEW
Elisa Greggio, Luigi Bubacco, Isabella Russo
Evidence indicates that leucine-rich repeat kinase 2 (LRRK2) controls multiple processes in neurons and glia cells. Deregulated LRRK2 activity due to gene mutation represents the most common cause of autosomal dominant Parkinson's disease (PD). Protein kinase A (PKA)-mediated signaling is a key regulator of brain function. PKA-dependent pathways play an important role in brain homeostasis, neuronal development, synaptic plasticity, control of microglia activation and inflammation. On the other hand, a decline of PKA signaling was shown to contribute to the progression of several neurodegenerative diseases, including PD...
February 8, 2017: Biochemical Society Transactions
https://www.readbyqxmd.com/read/28202679/from-molecular-chaperones-to-membrane-motors-through-the-lens-of-a-mass-spectrometrist
#4
REVIEW
Carol V Robinson
Twenty-five years ago, we obtained our first mass spectra of molecular chaperones in complex with protein ligands and entered a new field of gas-phase structural biology. It is perhaps now time to pause and reflect, and to ask how many of our initial structure predictions and models derived from mass spectrometry (MS) datasets were correct. With recent advances in structure determination, many of the most challenging complexes that we studied over the years have become tractable by other structural biology approaches enabling such comparisons to be made...
February 8, 2017: Biochemical Society Transactions
https://www.readbyqxmd.com/read/28202678/stress-induced-o-glcnacylation-an-adaptive-process-of-injured-cells
#5
REVIEW
Marissa R Martinez, Thiago Braido Dias, Peter S Natov, Natasha E Zachara
In the 30 years, since the discovery of nucleocytoplasmic glycosylation, O-GlcNAc has been implicated in regulating cellular processes as diverse as protein folding, localization, degradation, activity, post-translational modifications, and interactions. The cell co-ordinates these molecular events, on thousands of cellular proteins, in concert with environmental and physiological cues to fine-tune epigenetics, transcription, translation, signal transduction, cell cycle, and metabolism. The cellular stress response is no exception: diverse forms of injury result in dynamic changes to the O-GlcNAc subproteome that promote survival...
February 8, 2017: Biochemical Society Transactions
https://www.readbyqxmd.com/read/28202677/cancer-associated-fibroblasts-modulate-growth-factor-signaling-and-extracellular-matrix-remodeling-to-regulate-tumor-metastasis
#6
REVIEW
Begum Erdogan, Donna J Webb
Cancer-associated fibroblasts (CAFs) are major components of the surrounding stroma of carcinomas that emerge in the tumor microenvironment as a result of signals derived from the cancer cells. Biochemical cross-talk between cancer cells and CAFs as well as mechanical remodeling of the stromal extracellular matrix (ECM) by CAFs are important contributors to tumor cell migration and invasion, which are critical for cancer progression from a primary tumor to metastatic disease. In this review, we discuss key paracrine signaling pathways between CAFs and cancer cells that promote cancer cell migration and invasion...
February 8, 2017: Biochemical Society Transactions
https://www.readbyqxmd.com/read/28202676/harnessing-the-bmp-signaling-pathway-to-control-the-formation-of-cancer-stem-cells-by-effects-on-epithelial-to-mesenchymal-transition
#7
REVIEW
Ashish Bosukonda, William D Carlson
Cancer stem cells (CSCs) persist in tumors as a distinct population and may be causative in metastasis and relapse. CSC-rich tumors are associated with higher rates of metastasis and poor patient prognosis. Targeting CSCs therapeutically is challenging, since they seem to be resistant to standard chemotherapy. We have shown that a novel peptide agonist of bone morphogenetic protein (BMP) signaling, P123, is capable of inhibiting the growth of primary tumor cells by interacting with type I receptors selectively [activin receptor-like kinase 2 (ALK2) and ALK3, but not ALK6] and type II BMP receptors, activating SMAD 1/5/8 signaling and controlling the cell cycle pathway...
February 8, 2017: Biochemical Society Transactions
https://www.readbyqxmd.com/read/28202675/the-molecular-basis-of-mtorc1-regulated-translation
#8
REVIEW
Carson C Thoreen
The mammalian target of rapamycin (mTOR) signaling pathway is a master regulator of cell growth throughout eukaryotes. The pathway senses nutrient and other growth signals, and then orchestrates the complex systems of anabolic and catabolic metabolism that underpin the growth process. A central target of mTOR signaling is the translation machinery. mTOR uses a multitude of translation factors to drive the bulk production of protein that growth requires, but also to direct a post-transcriptional program of growth-specific gene expression...
February 8, 2017: Biochemical Society Transactions
https://www.readbyqxmd.com/read/28202674/lrrk2-detection-in-human-biofluids-potential-use-as-a-parkinson-s-disease-biomarker
#9
REVIEW
Jean-Marc Taymans, Eugénie Mutez, Matthieu Drouyer, William Sibran, Marie-Christine Chartier-Harlin
Leucine-rich repeat kinase 2 (LRRK2) is a complex signalling protein that is a key therapeutic target, particularly in Parkinson's disease (PD). In addition, there is now evidence showing that LRRK2 expression and phosphorylation levels have potential as markers of disease or target engagement. Indeed, reports show increases in LRRK2 protein levels in the prefrontal cortex of PD patients relative to controls, suggesting that increase in total LRRK2 protein expression is correlated with disease progression. LRRK2 phosphorylation levels are reduced in experimental systems for most disease mutants, and LRRK2 is also rapidly dephosphorylated upon LRRK2 inhibitor treatment, considered potential therapeutics...
February 8, 2017: Biochemical Society Transactions
https://www.readbyqxmd.com/read/28202673/molecular-architecture-of-polycomb-repressive-complexes
#10
REVIEW
Emily C Chittock, Sebastian Latwiel, Thomas C R Miller, Christoph W Müller
The polycomb group (PcG) proteins are a large and diverse family that epigenetically repress the transcription of key developmental genes. They form three broad groups of polycomb repressive complexes (PRCs) known as PRC1, PRC2 and Polycomb Repressive DeUBiquitinase, each of which modifies and/or remodels chromatin by distinct mechanisms that are tuned by having variable compositions of core and accessory subunits. Until recently, relatively little was known about how the various PcG proteins assemble to form the PRCs; however, studies by several groups have now allowed us to start piecing together the PcG puzzle...
February 8, 2017: Biochemical Society Transactions
https://www.readbyqxmd.com/read/28202672/structural-determinants-of-trim-protein-function
#11
REVIEW
Diego Esposito, Marios G Koliopoulos, Katrin Rittinger
Tripartite motif (TRIM) proteins constitute one of the largest subfamilies of Really Interesting New Gene (RING) E3 ubiquitin ligases and contribute to the regulation of numerous cellular activities, including innate immune responses. The conserved TRIM harbours a RING domain that imparts E3 ligase activity to TRIM family proteins, whilst a variable C-terminal region can mediate recognition of substrate proteins. The knowledge of the structure of these multidomain proteins and the functional interplay between their constituent domains is paramount to understanding their cellular roles...
February 8, 2017: Biochemical Society Transactions
https://www.readbyqxmd.com/read/28202671/extracellular-regulation-of-bmp-signaling-welcome-to-the-matrix
#12
REVIEW
Georg Sedlmeier, Jonathan P Sleeman
Given its importance in development and homeostasis, bone morphogenetic protein (BMP) signaling is tightly regulated at the extra- and intracellular level. The extracellular matrix (ECM) was initially thought to act as a passive mechanical barrier that sequesters BMPs. However, a new understanding about how the ECM plays an instructive role in regulating BMP signaling is emerging. In this mini-review, we discuss various ways in which the biochemical and physical properties of the ECM regulate BMP signaling.
February 8, 2017: Biochemical Society Transactions
https://www.readbyqxmd.com/read/28202670/mechanisms-of-lrrk2-dependent-neurodegeneration-role-of-enzymatic-activity-and-protein-aggregation
#13
REVIEW
Md Shariful Islam, Darren J Moore
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of familial Parkinson's disease (PD) with autosomal dominant inheritance. Accordingly, LRRK2 has emerged as a promising therapeutic target for disease modification in PD. Since the first discovery of LRRK2 mutations some 12 years ago, LRRK2 has been the subject of intense investigation. It has been established that LRRK2 can function as a protein kinase, with many putative substrates identified, and can also function as a GTPase that may serve in part to regulate kinase activity...
February 8, 2017: Biochemical Society Transactions
https://www.readbyqxmd.com/read/28202669/the-lrrk2-macroautophagy-axis-and-its-relevance-to-parkinson-s-disease
#14
REVIEW
Claudia Manzoni
A wide variety of different functions and an impressive array of interactors have been associated with leucine-rich repeat kinase 2 (LRRK2) over the years. Here, I discuss the hypothesis that LRRK2 may be capable of interacting with different proteins at different times and places, therefore, controlling a plethora of diverse functions based on the different complexes formed. Among these, I will then focus on macroautophagy in the general context of the endolysosomal system. First, the relevance of autophagy in Parkinson's disease will be evaluated giving a brief overview of all the relevant Parkinson's disease genes; then, the association of LRRK2 with macroautophagy and the endolysosomal pathway will be analyzed based on the supporting literature...
February 8, 2017: Biochemical Society Transactions
https://www.readbyqxmd.com/read/28202668/cellular-effects-mediated-by-pathogenic-lrrk2-homing-in-on-rab-mediated-processes
#15
REVIEW
Jesús Madero-Pérez, Elena Fdez, Belén Fernández, Antonio Jesús Lara Ordóñez, Marian Blanca Ramírez, María Romo Lozano, Pilar Rivero-Ríos, Sabine Hilfiker
Leucine-rich repeat kinase 2 (LRRK2) is a key player in the pathogenesis of Parkinson's disease. Mutations in LRRK2 are associated with increased kinase activity that correlates with cytotoxicity, indicating that kinase inhibitors may comprise promising disease-modifying compounds. However, before embarking on such strategies, detailed knowledge of the cellular deficits mediated by pathogenic LRRK2 in the context of defined and pathologically relevant kinase substrates is essential. LRRK2 has been consistently shown to impair various intracellular vesicular trafficking events, and recent studies have shown that LRRK2 can phosphorylate a subset of proteins that are intricately implicated in those processes...
February 8, 2017: Biochemical Society Transactions
https://www.readbyqxmd.com/read/28202667/lrrk2-from-kinase-to-gtpase-to-microtubules-and-back
#16
REVIEW
Marian Blanca Ramírez, Antonio Jesús Lara Ordóñez, Elena Fdez, Sabine Hilfiker
Mutations in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene are intimately linked to both familial and sporadic Parkinson's disease. LRRK2 is a large protein kinase able to bind and hydrolyse GTP. A wealth of in vitro studies have established that the distinct pathogenic LRRK2 mutants differentially affect those enzymatic activities, either causing an increase in kinase activity without altering GTP binding/GTP hydrolysis, or displaying no change in kinase activity but increased GTP binding/decreased GTP hydrolysis...
February 8, 2017: Biochemical Society Transactions
https://www.readbyqxmd.com/read/28202666/lrrk2-in-peripheral-and-central-nervous-system-innate-immunity-its-link-to-parkinson-s-disease
#17
REVIEW
Heyne Lee, William S James, Sally A Cowley
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are found in familial and idiopathic cases of Parkinson's disease (PD), but are also associated with immune-related disorders, notably Crohn's disease and leprosy. Although the physiological function of LRRK2 protein remains largely elusive, increasing evidence suggests that it plays a role in innate immunity, a process that also has been implicated in neurodegenerative diseases, including PD. Innate immunity involves macrophages and microglia, in which endogenous LRRK2 expression is precisely regulated and expression is strongly up-regulated upon cell activation...
February 8, 2017: Biochemical Society Transactions
https://www.readbyqxmd.com/read/28202665/neuronal-death-signaling-pathways-triggered-by-mutant-lrrk2
#18
REVIEW
Hardy J Rideout
Autosomal dominantly inherited mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease. While considerable progress has been made in understanding its function and the many different cellular activities in which it participates, a clear understanding of the mechanism(s) of the induction of neuronal death by mutant forms of LRRK2 remains elusive. Although several in vivo models have documented the progressive loss of dopaminergic neurons of the substantia nigra, more complete interrogations of the modality of neuronal death have been gained from cellular models...
February 8, 2017: Biochemical Society Transactions
https://www.readbyqxmd.com/read/28202664/lrrk2-mouse-models-dissecting-the-behavior-striatal-neurochemistry-and-neurophysiology-of-pd-pathogenesis
#19
REVIEW
Mattia Volta, Heather Melrose
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of familial Parkinson's disease (PD), resembling the sporadic disorder. Intensive effort has been directed toward LRRK2 mouse modeling and investigation, aimed at reproducing the human disease to inform mechanistic studies of pathogenesis and design of neuroprotective therapies. The physiological function of LRRK2 is still under exploration, but a clear role in striatal neurophysiology and animal behavior has emerged. Alterations in LRRK2 impair dopamine (DA) transmission, regulation and signaling, in addition to corticostriatal synaptic plasticity...
February 8, 2017: Biochemical Society Transactions
https://www.readbyqxmd.com/read/28202663/translating-protein-phosphatase-research-into-treatments-for-neurodegenerative-diseases
#20
REVIEW
Jeyapriya R Sundaram, Irene C J Lee, Shirish Shenolikar
Many of the major neurodegenerative disorders are characterized by the accumulation of intracellular protein aggregates in neurons and other cells in brain, suggesting that errors in protein quality control mechanisms associated with the aging process play a critical role in the onset and progression of disease. The increased understanding of the unfolded protein response (UPR) signaling network and, more specifically, the structure and function of eIF2α phosphatases has enabled the development or discovery of small molecule inhibitors that show great promise in restoring protein homeostasis and ameliorating neuronal damage and death...
February 8, 2017: Biochemical Society Transactions
journal
journal
26220
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"