Read by QxMD icon Read

Biological Bulletin

J B Lindström, N T Pierce, M I Latz
Transient receptor potential (TRP) ion channels are common components of mechanosensing pathways, mainly described in mammals and other multicellular organisms. To gain insight into the evolutionary origins of eukaryotic mechanosensory proteins, we investigated the involvement of TRP channels in mechanosensing in a unicellular eukaryotic protist, the dinoflagellate Lingulodinium polyedra. BLASTP analysis of the protein sequences predicted from the L. polyedra transcriptome revealed six sequences with high similarity to human TRPM2, TRPM8, TRPML2, TRPP1, and TRPP2; and characteristic TRP domains were identified in all sequences...
October 2017: Biological Bulletin
(no author information available yet)
No abstract text is available yet for this article.
October 2017: Biological Bulletin
Katelyn E A MacNeil, Alexia T Scaros, Roger P Croll, Cory D Bishop
Within a common body plan, echinoid planktotrophic larvae are morphologically diverse, with variations in overall size, the length, and number of arms and the presence or absence of epidermal structures. In this report, we are interested in variation in larval arm-flexing behavior and correlated differences in larval musculature. Larvae of the cidaroid Eucidaris tribuloides exhibit conspicuous and regular arm-flexing behavior. In contrast, Lytechinus variegatus, a representative of the euechinoid clade, does not exhibit this behavior...
October 2017: Biological Bulletin
Emily S Bellis, Dee R Denver
Rising ocean temperatures disrupt the symbiosis between corals and their microalgae, accelerating global decline of coral reef ecosystems. Because of the difficulty of performing laboratory experiments with corals, the sea anemone Aiptasia has emerged as an important model system for molecular studies of coral bleaching and symbiosis. Here, we investigate natural variation in bleaching responses among different genetic lineages of Aiptasia. Both heat- and cold-induced paths to symbiosis breakdown were analyzed...
October 2017: Biological Bulletin
Samuel M Bashevkin, Oscar R Chaparro, Daniela A Mardones-Toledo, Victor M Cubillos, Jan A Pechenik
Desiccation is an important limiting factor in the intertidal zone. Generally decreasing seaward, desiccation stress can also be alleviated in wet microhabitats. Juvenile snails are generally more susceptible to desiccation than adults, and, for some species, juveniles must therefore hide in microhabitats to survive emersion. The transition from hiding in safe microhabitats to being able to survive fully exposed for the duration of low tide is not well documented. In this study, we investigated the influence of size on desiccation tolerance in juveniles of the calyptraeid gastropod Crepipatella peruviana to determine the size at which they can first survive exposure to air...
October 2017: Biological Bulletin
Avery E Scherer, Delbert L Smee
Many prey react to predation risk by altering their phenotype to reduce their chances of being consumed but incur reductions in growth and fecundity when reacting to predators. To determine when to produce defenses, prey collect information and evaluate the costs and benefits of defense induction. Resource availability can affect prey ability and willingness to incur defense costs. When resources are scarce, defenses may suffer disproportionate decreases in energy allocation if defenses would further reduce prey access to resources or if resources are needed to maintain metabolic functions...
October 2017: Biological Bulletin
Benny K K Chan, Alireza Sari, Jens T Høeg
Barnacle cypris antennules are important for substratum attachment during settlement and on through metamorphosis from the larval stage to sessile adult. Studies on the morphology of cirripede cyprids are mostly qualitative, based on descriptions from images obtained using a scanning electron microscope (SEM). To our knowledge, our study is the first to use scanning electron microscopy to quantify overall structural diversity in cypris antennules by measuring 26 morphological parameters, including the structure of sensory organs...
October 2017: Biological Bulletin
Barbara-Anne Battelle
The American horseshoe crab Limulus polyphemus (Linnaeus, 1758) is one of four extant species of xiphosuran chelicerates, the sister group to arachnids. Because of their position in the arthropod family tree and because they exhibit many plesiomorphic characteristics, Xiphosura are considered a proxy for the euchelicerate ancestor and therefore important for understanding the evolution and diversification of chelicerates and arthropods. Limulus polyphemus is the most extensively studied xiphosuran, and its visual system has long been a focus of studies critical for our understanding of basic mechanisms of vision and the evolution of visual systems in arthropods...
August 2017: Biological Bulletin
Mary W Donohue, Karen L Carleton, Thomas W Cronin
Visual pigments, each composed of an opsin protein covalently bound to a chromophore molecule, confer light sensitivity for vision. The eyes of some species of stomatopod crustaceans, or mantis shrimp, can express dozens of different opsin genes. The opsin diversity, along with spectral filters and unique tripartite eye structure, bestow upon stomatopods unusually complex visual systems. Although opsins are found in tissues outside typical image-forming eyes in other animals, extraocular opsin expression in stomatopods, animals well known for their diversity of opsins, was unknown...
August 2017: Biological Bulletin
Megan L Porter, Mireille Steck, Vittoria Roncalli, Petra H Lenz
Copepod crustaceans are an abundant and ecologically significant group whose basic biology is guided by numerous visually guided behaviors. These behaviors are driven by copepod eyes, including naupliar eyes and Gicklhorn's organs, which vary widely in structure and function among species. Yet little is known about the molecular aspects of copepod vision. In this study we present a general overview of the molecular aspects of copepod vision by identifying phototransduction genes from newly generated and publicly available RNA-sequencing data and assemblies from 12 taxonomically diverse copepod species...
August 2017: Biological Bulletin
Nathan I Morehouse, Elke K Buschbeck, Daniel B Zurek, Mireille Steck, Megan L Porter
Spiders are among the world's most species-rich animal lineages, and their visual systems are likewise highly diverse. These modular visual systems, composed of four pairs of image-forming "camera" eyes, have taken on a huge variety of forms, exhibiting variation in eye size, eye placement, image resolution, and field of view, as well as sensitivity to color, polarization, light levels, and motion cues. However, despite this conspicuous diversity, our understanding of the genetic underpinnings of these visual systems remains shallow...
August 2017: Biological Bulletin
Alexandra C N Kingston, Daniel R Chappell, Hayley V Miller, Seung Joon Lee, Daniel I Speiser
A multitude of image-forming eyes are spread across the bodies of certain invertebrates. Recent efforts have characterized how these eyes function, but less progress has been made toward describing the neural structures associated with them. Scallops, for example, have a distributed visual system that includes dozens of eyes whose optic nerves project to the lateral lobes of the parietovisceral ganglion (PVG). To identify sensory receptors and chemical synapses associated with the scallop visual system, we studied the expression of four G protein α subunits (Gαi, Gαo, Gαq, and Gαs) in the eyes and PVG of the bay scallop Argopecten irradians (Lamarck, 1819)...
August 2017: Biological Bulletin
Michael J Bok, Megan L Porter, Harry A Ten Hove, Richard Smith, Dan-Eric Nilsson
Fan worms, represented by sabellid and serpulid polychaetes, have an astonishing array of unusual eyes and photoreceptors located on their eponymous feeding appendages. Here we organize the previous descriptions of these eyes in serpulids and report new anatomical, molecular, and physiological data regarding their structure, function, and evolution and the likely identity of their phototransduction machinery. We report that, as in sabellids, serpulids display a broad diversity of radiolar eye arrangements and ocellar structures...
August 2017: Biological Bulletin
Daniel I Speiser, William M Kier
No abstract text is available yet for this article.
August 2017: Biological Bulletin
Davide Faggionato, Jeanne M Serb
The rise of high-throughput RNA sequencing (RNA-seq) and de novo transcriptome assembly has had a transformative impact on how we identify and study genes in the phototransduction cascade of non-model organisms. But the advantage provided by the nearly automated annotation of RNA-seq transcriptomes may at the same time hinder the possibility for gene discovery and the discovery of new gene functions. For example, standard functional annotation based on domain homology to known protein families can only confirm group membership, not identify the emergence of new biochemical function...
August 2017: Biological Bulletin
Christine Ewers-Saucedo, Benny K K Chan, John D Zardus, John P Wares
Symbiotic relationships are often species specific, allowing symbionts to adapt to their host environments. Host generalists, on the other hand, have to cope with diverse environments. One coping strategy is phenotypic plasticity, defined by the presence of host-specific phenotypes in the absence of genetic differentiation. Recent work indicates that such host-specific phenotypic plasticity is present in the West Pacific lineage of the commensal barnacle Chelonibia testudinaria (Linnaeus, 1758). We investigated genetic and morphological host-specific structure in the genetically distinct Atlantic sister lineage of C...
June 2017: Biological Bulletin
J Andrew DeWoody, Nadia B Fernandez, Anna Brüniche-Olsen, Jennifer D Antonides, Jacqueline M Doyle, Phillip San Miguel, Rick Westerman, Vladimir V Vertyankin, Céline A J Godard-Codding, John W Bickham
Genetic and genomic approaches have much to offer in terms of ecology, evolution, and conservation. To better understand the biology of the gray whale Eschrichtius robustus (Lilljeborg, 1861), we sequenced the genome and produced an assembly that contains ∼95% of the genes known to be highly conserved among eukaryotes. From this assembly, we annotated 22,711 genes and identified 2,057,254 single-nucleotide polymorphisms (SNPs). Using this assembly, we generated a curated list of candidate genes potentially subject to strong natural selection, including genes associated with osmoregulation, oxygen binding and delivery, and other aspects of marine life...
June 2017: Biological Bulletin
Emily A Zepeda, Robert J Veline, Robyn J Crook
Learning and memory in cephalopod molluscs have received intensive study because of cephalopods' complex behavioral repertoire and relatively accessible nervous systems. While most of this research has been conducted using octopus and cuttlefish species, there has been relatively little work on squid. Euprymna scolopes Berry, 1913, a sepiolid squid, is a promising model for further exploration of cephalopod cognition. These small squid have been studied in detail for their symbiotic relationship with bioluminescent bacteria, and their short generation time and successful captive breeding through multiple generations make them appealing models for neurobiological research...
June 2017: Biological Bulletin
Robert Burns, Jan Pechenik
Marine invertebrate larvae typically take hours to weeks after being released into the plankton before becoming "competent" to metamorphose. The mechanisms that govern this transition between the precompetent and metamorphically competent states are unknown. We studied gene expression patterns in precompetent and competent larvae of the salt-marsh-dwelling polychaete worm Capitella teleta (Blake, Grassle & Eckelbarger, 2009)-a species in which precompetent larvae are unusually easy to distinguish from competent larvae-to determine differences in gene expression associated with the onset of metamorphic competence...
June 2017: Biological Bulletin
Matthew P Galaska, Chester J Sands, Scott R Santos, Andrew R Mahon, Kenneth M Halanych
The Antarctic Polar Front (APF) is one of the most well-defined and persistent oceanographic features on the planet and serves as a barrier to dispersal between the Southern Ocean and lower latitudes. High levels of endemism in the Southern Ocean have been attributed to this barrier, whereas the accompanying Antarctic Circumpolar Current (ACC) likely promotes west-to-east dispersal. Previous phylogeographic work on the brittle star Astrotoma agassizii Lyman, 1875 based on mitochondrial genes suggested isolation across the APF, even though populations in both South American waters and the Southern Ocean are morphologically indistinguishable...
June 2017: Biological Bulletin
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"