Read by QxMD icon Read


Sandip Sinharay
Tests for a change point (e.g., Chen and Gupta, Parametric statistical change point analysis (2nd ed.). Birkhuser, Boston, 2012; Hawkins et al., J Qual Technol 35:355-366, 2003) have recently been brought into the spotlight for their potential uses in psychometrics. They have been successfully applied to detect an unusual change in the mean score of a sequence of administrations of an international language assessment (Lee and von Davier, Psychometrika 78:557-575, 2013) and to detect speededness of examinees (Shao et al...
October 21, 2016: Psychometrika
Björn Andersson, Marie Wiberg
Item response theory (IRT) observed-score kernel equating is introduced for the non-equivalent groups with anchor test equating design using either chain equating or post-stratification equating. The equating function is treated in a multivariate setting and the asymptotic covariance matrices of IRT observed-score kernel equating functions are derived. Equating is conducted using the two-parameter and three-parameter logistic models with simulated data and data from a standardized achievement test. The results show that IRT observed-score kernel equating offers small standard errors and low equating bias under most settings considered...
October 14, 2016: Psychometrika
Edoardo Saccenti, Marieke E Timmerman
Horn's parallel analysis is a widely used method for assessing the number of principal components and common factors. We discuss the theoretical foundations of parallel analysis for principal components based on a covariance matrix by making use of arguments from random matrix theory. In particular, we show that (i) for the first component, parallel analysis is an inferential method equivalent to the Tracy-Widom test, (ii) its use to test high-order eigenvalues is equivalent to the use of the joint distribution of the eigenvalues, and thus should be discouraged, and (iii) a formal test for higher-order components can be obtained based on a Tracy-Widom approximation...
October 13, 2016: Psychometrika
Daniel B McArtor, Gitta H Lubke, C S Bergeman
Person-centered methods are useful for studying individual differences in terms of (dis)similarities between response profiles on multivariate outcomes. Multivariate distance matrix regression (MDMR) tests the significance of associations of response profile (dis)similarities and a set of predictors using permutation tests. This paper extends MDMR by deriving and empirically validating the asymptotic null distribution of its test statistic, and by proposing an effect size for individual outcome variables, which is shown to recover true associations...
October 13, 2016: Psychometrika
Hwanhee Hong, Kara E Rudolph, Elizabeth A Stuart
Propensity score methods are an important tool to help reduce confounding in non-experimental studies and produce more accurate causal effect estimates. Most propensity score methods assume that covariates are measured without error. However, covariates are often measured with error. Recent work has shown that ignoring such error could lead to bias in treatment effect estimates. In this paper, we consider an additional complication: that of differential measurement error across treatment groups, such as can occur if a covariate is measured differently in the treatment and control groups...
October 13, 2016: Psychometrika
Maria Bolsinova, Paul de Boeck, Jesper Tijmstra
The assumption of conditional independence between response time and accuracy given speed and ability is commonly made in response time modelling. However, this assumption might be violated in some cases, meaning that the relationship between the response time and the response accuracy of the same item cannot be fully explained by the correlation between the overall speed and ability. We propose to explicitly model the residual dependence between time and accuracy by incorporating the effects of the residual response time on the intercept and the slope parameter of the IRT model for response accuracy...
October 13, 2016: Psychometrika
Chia-Yi Chiu, Hans-Friedrich Köhn, Yi Zheng, Robert Henson
Joint maximum likelihood estimation (JMLE) is developed for diagnostic classification models (DCMs). JMLE has been barely used in Psychometrics because JMLE parameter estimators typically lack statistical consistency. The JMLE procedure presented here resolves the consistency issue by incorporating an external, statistically consistent estimator of examinees' proficiency class membership into the joint likelihood function, which subsequently allows for the construction of item parameter estimators that also have the consistency property...
October 12, 2016: Psychometrika
Peter M Bentler
Classical test theory reliability coefficients are said to be population specific. Reliability generalization, a meta-analysis method, is the main procedure for evaluating the stability of reliability coefficients across populations. A new approach is developed to evaluate the degree of invariance of reliability coefficients to population characteristics. Factor or common variance of a reliability measure is partitioned into parts that are, and are not, influenced by control variables, resulting in a partition of reliability into a covariate-dependent and a covariate-free part...
October 12, 2016: Psychometrika
Myrsini Katsikatsou, Irini Moustaki
Correlated multivariate ordinal data can be analysed with structural equation models. Parameter estimation has been tackled in the literature using limited-information methods including three-stage least squares and pseudo-likelihood estimation methods such as pairwise maximum likelihood estimation. In this paper, two likelihood ratio test statistics and their asymptotic distributions are derived for testing overall goodness-of-fit and nested models, respectively, under the estimation framework of pairwise maximum likelihood estimation...
October 12, 2016: Psychometrika
Laura Bocci, Donatella Vicari
A Generalized INDCLUS model, termed GINDCLUS, is presented for clustering three-way two-mode proximity data. In order to account for the heterogeneity of the data, both a partition of the subjects into homogeneous classes and a covering of the objects into groups are simultaneously determined. Furthermore, the availability of information which is external to the three-way data is exploited to better account for such heterogeneity: the weights of both classifications are linearly linked to external variables allowing for the identification of meaningful classes of subjects and groups of objects...
October 12, 2016: Psychometrika
Cristina Mollica, Luca Tardella
The elicitation of an ordinal judgment on multiple alternatives is often required in many psychological and behavioral experiments to investigate preference/choice orientation of a specific population. The Plackett-Luce model is one of the most popular and frequently applied parametric distributions to analyze rankings of a finite set of items. The present work introduces a Bayesian finite mixture of Plackett-Luce models to account for unobserved sample heterogeneity of partially ranked data. We describe an efficient way to incorporate the latent group structure in the data augmentation approach and the derivation of existing maximum likelihood procedures as special instances of the proposed Bayesian method...
October 12, 2016: Psychometrika
Hans-Friedrich Köhn, Chia-Yi Chiu
The Q-matrix of a cognitively diagnostic test is said to be complete if it allows for the identification of all possible proficiency classes among examinees. Completeness of the Q-matrix is therefore a key requirement for any cognitively diagnostic test. However, completeness of the Q-matrix is often difficult to establish, especially, for tests with a large number of items involving multiple attributes. As an additional complication, completeness is not an intrinsic property of the Q-matrix, but can only be assessed in reference to a specific cognitive diagnosis model (CDM) supposed to underly the data-that is, the Q-matrix of a given test can be complete for one model but incomplete for another...
October 6, 2016: Psychometrika
Hye Won Suk, Heungsun Hwang
An extension of Generalized Structured Component Analysis (GSCA), called Functional GSCA, is proposed to analyze functional data that are considered to arise from an underlying smooth curve varying over time or other continua. GSCA has been geared for the analysis of multivariate data. Accordingly, it cannot deal with functional data that often involve different measurement occasions across participants and a large number of measurement occasions that exceed the number of participants. Functional GSCA addresses these issues by integrating GSCA with spline basis function expansions that represent infinite-dimensional curves onto a finite-dimensional space...
October 6, 2016: Psychometrika
David J Hessen
Under the general common factor model, the reliabilities of factor score estimators might be of more interest than the reliability of the total score (the unweighted sum of item scores). In this paper, lower bounds to the reliabilities of Thurstone's factor score estimators, Bartlett's factor score estimators, and McDonald's factor score estimators are derived and conditions are given under which these lower bounds are equal. The relative performance of the derived lower bounds is studied using classic example data sets...
October 6, 2016: Psychometrika
Brenden Bishop, Minjeong Jeon
No abstract text is available yet for this article.
October 4, 2016: Psychometrika
Guido Consonni, Roberta Paroli
In the social sciences we are often interested in comparing models specified by parametric equality or inequality constraints. For instance, when examining three group means [Formula: see text] through an analysis of variance (ANOVA), a model may specify that [Formula: see text], while another one may state that [Formula: see text], and finally a third model may instead suggest that all means are unrestricted. This is a challenging problem, because it involves a combination of nonnested models, as well as nested models having the same dimension...
October 4, 2016: Psychometrika
Jianan Sun, Yunxiao Chen, Jingchen Liu, Zhiliang Ying, Tao Xin
We develop a latent variable selection method for multidimensional item response theory models. The proposed method identifies latent traits probed by items of a multidimensional test. Its basic strategy is to impose an [Formula: see text] penalty term to the log-likelihood. The computation is carried out by the expectation-maximization algorithm combined with the coordinate descent algorithm. Simulation studies show that the resulting estimator provides an effective way in correctly identifying the latent structures...
October 3, 2016: Psychometrika
David Magis, Norman Verhelst
The purpose of this note is to focus on the finiteness of the weighted likelihood estimator (WLE) of ability in the context of dichotomous and polytomous item response theory (IRT) models. It is established that the WLE always returns finite ability estimates. This general result is valid for dichotomous (one-, two-, three- and four-parameter logistic) IRT models, the class of polytomous difference models and divide-by-total models, independently of the number of items, the item parameters and the response patterns...
October 3, 2016: Psychometrika
Michela Battauz
When test forms are calibrated separately, item response theory parameters are not comparable because they are expressed on different measurement scales. The equating process includes the conversion of item parameter estimates on a common scale and the determination of comparable test scores. Various statistical methods have been proposed to perform equating between two test forms. This paper provides a generalization to multiple test forms of the mean-geometric mean, the mean-mean, the Haebara, and the Stocking-Lord methods...
October 3, 2016: Psychometrika
Quinn N Lathrop, Ying Cheng
Item cloning is increasingly used to generate slight differences in tasks for use in psychological experiments and educational assessments. This paper investigates the psychometric issues that arise when item cloning introduces variation into the difficulty parameters of the item clones. Four models are proposed and evaluated in simulation studies with conditions representing possible types of variation due to item cloning. Depending on the model specified, unaccounted variance in the item clone difficulties propagates to other parameters in the model, causing specific and predictable patterns of bias...
October 3, 2016: Psychometrika
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"