Read by QxMD icon Read

Advances in Virus Research

Aurora Fraile, Fernando García-Arenal
The study of tobacco mosaic virus and other tobamovirus species has greatly contributed to the development of all areas of virology, including virus evolution. Research with tobamoviruses has been pioneer, or particularly significant, in all major areas of research in this field, including: the characterization of the genetic diversity of virus populations, the mechanisms and rates of generation of genetic diversity, the analysis of the genetic structure of virus populations and of the factors that shape it, the adaptation of viruses to hosts and the evolution of host range, and the evolution of virus taxa and of virus-host interactions...
2018: Advances in Virus Research
Katalin Salánki, Ákos Gellért, Katalin Nemes, Zoltán Divéki, Ervin Balázs
Cucumber mosaic virus (CMV) is a small RNA virus capable of infecting a wide variety of plant species. The high economic losses due to the CMV infection made this virus a relevant subject of scientific studies, which were further facilitated by the small size of the viral genome. Hence, CMV also became a model organism to investigate the molecular mechanism of pathogenesis. All viral functions are dependent on intra- and intermolecular interactions between nucleic acids and proteins of the virus and the host...
2018: Advances in Virus Research
Andrew O Jackson, Ralf G Dietzgen, Michael M Goodin, Zhenghe Li
This chapter reviews the discoveries and initial characterizations (1930-1990) of three plant rhabdoviruses, sonchus yellow net virus, potato yellow dwarf virus, and lettuce necrotic yellows virus, that have become model systems for research on this group of enveloped negative-strand RNA plant viruses. We have used our personal perspectives to review the early historical studies of these viruses, the important technologies and tools, such as density gradient centrifugation, that were developed during the research, and to highlight the eminent scientists involved in these discoveries...
2018: Advances in Virus Research
William M Wintermantel
Viruses transmitted by whiteflies are predominantly classified as having either persistent circulative or semipersistent transmission, and the majority of studies have addressed transmission of viruses in the genera Begomovirus (family Geminiviridae) and Crinivirus (family Closteroviridae), respectively. Early studies on vector transmission primarily addressed individual aspects of transmission; however, with the breadth of new technology now available, an increasingly greater number of studies involve coordinated research that is beginning to assemble a more complete picture of how whiteflies and viruses have coevolved to facilitate transmission...
2018: Advances in Virus Research
John P Carr, Ruairí Donnelly, Trisna Tungadi, Alex M Murphy, Sanjie Jiang, Ana Bravo-Cazar, Ju-Yeon Yoon, Nik J Cunniffe, Beverley J Glover, Christopher A Gilligan
Do the alterations in plant defensive signaling and metabolism that occur in susceptible hosts following virus infection serve any purpose beyond directly aiding viruses to replicate and spread? Or indeed, are these modifications to host phenotype purely incidental consequences of virus infection? A growing body of data, in particular from studies of viruses vectored by whiteflies and aphids, indicates that viruses influence the efficiency of their own transmission by insect vectors and facilitate mutualistic relationships between viruses and their insect vectors...
2018: Advances in Virus Research
George P Lomonossoff, Christina Wege
Ever since its initial characterization in the 19th century, tobacco mosaic virus (TMV) has played a prominent role in the development of modern virology and molecular biology. In particular, research on the three-dimensional structure of the virus particles and the mechanism by which these assemble from their constituent protein and RNA components has made TMV a paradigm for our current view of the morphogenesis of self-assembling structures, including viral particles. More recently, this knowledge has been applied to the development of novel reagents and structures for applications in biomedicine and bionanotechnology...
2018: Advances in Virus Research
Ralf G Dietzgen, Juliana Freitas-Astúa, Camila Chabi-Jesus, Pedro L Ramos-González, Michael M Goodin, Hideki Kondo, Aline D Tassi, Elliot W Kitajima
A group of related bacilliform, nuclear viruses with a bisegmented negative-sense RNA genome that are transmitted by Brevipalpus mites likely in a circulative-propagative manner were recently classified in the new genus Dichorhavirus, family Rhabdoviridae. These viruses cause localized lesions on leaves, stems, and fruits of economically significant horticultural and ornamental plant species. Among its members, orchid fleck virus, citrus leprosis virus N, and coffee ringspot virus are most prominent. This chapter summarizes the current knowledge about these viruses, available detection techniques, and their interactions with their plant hosts and mite vectors...
2018: Advances in Virus Research
Peter Palukaitis, Marilyn J Roossinck
No abstract text is available yet for this article.
2018: Advances in Virus Research
Carolyn M Malmstrom
No abstract text is available yet for this article.
2018: Advances in Virus Research
Nataša Mehle, Ion Gutiérrez-Aguirre, Denis Kutnjak, Maja Ravnikar
Viruses represent the most abundant and diverse of the biological entities in environmental waters, including the seas and probably also freshwater systems. They are important players in ecological networks in waters and influence global biochemical cycling and community composition dynamics. Among the many diverse viruses from terrestrial environments found in environmental waters, some are plant, animal, and/or human pathogens. The majority of pathogenic viral species found in waters are very stable and can survive outside host cells for long periods...
2018: Advances in Virus Research
Sohini Claverie, Pauline Bernardo, Simona Kraberger, Penelope Hartnady, Pierre Lefeuvre, Jean-Michel Lett, Serge Galzi, Denis Filloux, Gordon W Harkins, Arvind Varsani, Darren P Martin, Philippe Roumagnac
The number of plant viruses that are known likely remains only a vanishingly small fraction of all extant plant virus species. Consequently, the distribution and population dynamics of plant viruses within even the best-studied ecosystems have only ever been studied for small groups of virus species. Even for the best studied of these groups very little is known about virus diversity at spatial scales ranging from an individual host, through individual local host populations to global host populations. To date, metagenomics studies that have assessed the collective or metagenomes of viruses at the ecosystem scale have revealed many previously unrecognized viral species...
2018: Advances in Virus Research
Alberto Rastrojo, Antonio Alcamí
Viruses play an important role in the control of microbial communities, and it has been suggested that the influence of viruses in polar ecosystems, with low nutrients and under extreme environmental conditions, may be greater. Viral metagenomics allows the genetic characterization of complex viral communities without the need to isolate and grow viruses. Recent investigations in Antarctica and the Arctic are uncovering a great diversity of DNA viruses, including bacteriophages, circular single-stranded DNA viruses, algal-infecting phycodnaviruses, and virophages, adapted to these extreme environments...
2018: Advances in Virus Research
Michael J McLeish, Aurora Fraile, Fernando García-Arenal
The host range of a plant virus is the number of species in which it can reproduce. Most studies of plant virus host range evolution have focused on the genetics of host-pathogen interactions. However, the distribution and abundance of plant viruses and their hosts do not always overlap, and these spatial and temporal discontinuities in plant virus-host interactions can result in various ecological processes that shape host range evolution. Recent work shows that the distributions of pathogenic and resistant genotypes, vectors, and other resources supporting transmission vary widely in the environment, producing both expected and unanticipated patterns...
2018: Advances in Virus Research
Dino P McMahon, Lena Wilfert, Robert J Paxton, Mark J F Brown
Emerging infectious diseases arise as a result of novel interactions between populations of hosts and pathogens, and can threaten the health and wellbeing of the entire spectrum of biodiversity. Bees and their viruses are a case in point. However, detailed knowledge of the ecological factors and evolutionary forces that drive disease emergence in bees and other host-pathogen communities is surprisingly lacking. In this review, we build on the fundamental insight that viruses evolve and adapt over timescales that overlap with host ecology...
2018: Advances in Virus Research
Kerry E Mauck, Quentin Chesnais, Lori R Shapiro
Plant viruses possess adaptations for facilitating acquisition, retention, and inoculation by vectors. Until recently, it was hypothesized that these adaptations are limited to virus proteins that enable virions to bind to vector mouthparts or invade their internal tissues. However, increasing evidence suggests that viruses can also manipulate host plant phenotypes and vector behaviors in ways that enhance their own transmission. Manipulation of vector-host interactions occurs through virus effects on host cues that mediate vector orientation, feeding, and dispersal behaviors, and thereby, the probability of virus transmission...
2018: Advances in Virus Research
Roger A C Jones
The capacity to spread by diverse transmission pathways enhances a virus' ability to spread effectively and survive when circumstances change. This review aims to improve understanding of how plant and insect viruses spread through natural and managed environments by drawing attention to 12 novel or neglected virus transmission pathways whose contribution is underestimated. For plant viruses, the pathways reviewed are vertical and horizontal transmission via pollen, and horizontal transmission by parasitic plants, natural root grafts, wind-mediated contact, chewing insects, and contaminated water or soil...
2018: Advances in Virus Research
Jesse L Brunner, Christian M Yarber
Viruses persist outside their hosts in a variety of forms, from naked virions to virus protected in sloughed tissues or carcasses, and for a range of times, all of which affect the likelihood and importance of transmission from the environment. This review synthesizes the literature on environmental persistence of viruses in the genus Ranavirus (family Iridoviridae), which are large double-stranded DNA viruses of ectothermic, often aquatic or semiaquatic vertebrates. Ranaviruses have been associated with mass mortality events in natural and captive settings around the world, and with population and community-wide declines in Europe...
2018: Advances in Virus Research
Karen D Weynberg
Viruses infect all kingdoms of marine life from bacteria to whales. Viruses in the world's oceans play important roles in the mortality of phytoplankton, and as drivers of evolution and biogeochemical cycling. They shape host population abundance and distribution and can lead to the termination of algal blooms. As discoveries about this huge reservoir of genetic and biological diversity grow, our understanding of the major influences viruses exert in the global marine environment continues to expand. This chapter discusses the key discoveries that have been made to date about marine viruses and the current direction of this field of research...
2018: Advances in Virus Research
Thomas C Mettenleiter, Margaret Kielian, Marilyn J Roossinck
No abstract text is available yet for this article.
2018: Advances in Virus Research
Bradley I Hillman, Aulia Annisa, Nobuhiro Suzuki
Plant-associated fungi are infected by viruses at the incidence rates from a few % to over 90%. Multiple viruses often coinfect fungal hosts, and occasionally alter their phenotypes, but most of the infections are asymptomatic. Phenotypic alterations are grouped into two types: harmful or beneficial to the host fungi. Harmful interactions between viruses and hosts include hypovirulence and/or debilitation that are documented in a number of phytopathogenic fungi, exemplified by the chestnut blight, white root rot, and rapeseed rot fungi...
2018: Advances in Virus Research
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"