Read by QxMD icon Read

Chemical Society Reviews

Alexey Volkov, Fredrik Tinnis, Tove Slagbrand, Paz Trillo, Hans Adolfsson
The reduction of amides gives access to a wide variety of important compounds such as amines, imines, enamines, nitriles, aldehydes and alcohols. The chemoselective transformation into these functional groups is challenging due to the intrinsic stability of the amide bond; nevertheless, the ability to reduce highly stable carboxamides selectively in the presence of sensitive functional groups is of high synthetic value for academic and industrial chemists. Hydride-based reagents such as LiAlH4 or diboranes are today the most commonly used compounds for amide reductions, and apart from the substantial amount of waste generated using these methods, they lack tolerance to most other functional groups...
October 24, 2016: Chemical Society Reviews
Andreas Ehnbom, Subrata K Ghosh, Kyle G Lewis, John A Gladysz
As reported by Alfred Werner in 1911-1912, salts of the formally D3 symmetric [Co(en)3](3+) (en = ethylenediamine) trication were among the first chiral inorganic compounds to be resolved into enantiomers, the absolute configurations of which are denoted Λ (left handed helix) or Δ (right handed helix). After a >100 year dormant period during which few useful reactions of these substitution inert complexes were described, carbon substituted derivatives have recently been found to be potent catalysts for enantioselective organic synthesis...
October 20, 2016: Chemical Society Reviews
Katie A Cychosz, Rémy Guillet-Nicolas, Javier García-Martínez, Matthias Thommes
This review focuses on important aspects of applying physisorption for the pore structural characterization of hierarchical materials such as mesoporous zeolites. During the last decades major advances in understanding the adsorption and phase behavior of fluids confined in ordered nanoporous materials have been made, which led to major progress in the physisorption characterization methodology (summarized in the 2015 IUPAC report on physisorption characterization). Here we discuss progress and challenges for the physisorption characterization of nanoporous solids exhibiting various levels of porosity from micro- to macropores...
October 19, 2016: Chemical Society Reviews
(no author information available yet)
No abstract text is available yet for this article.
October 19, 2016: Chemical Society Reviews
José-Antonio García-López, Michael F Greaney
The synthesis of biaryls from benzyne intermediates offers an alternative strategy to conventional metal-catalyzed cross-coupling approaches. The concept is as old as benzyne itself, being the basis of Wittig's seminal observations on biphenyl synthesis from phenyl lithium and fluorobenzene in 1940. In the intervening 75 years, the transformation has grown to encompass a remarkable scope of reaction classes, and continues to develop as new benzyne precursors enable inventive biaryl syntheses under mild conditions...
October 18, 2016: Chemical Society Reviews
Karen Michaeli, Nirit Kantor-Uriel, Ron Naaman, David H Waldeck
The recently discovered chiral induced spin selectivity (CISS) effect gives rise to a spin selective electron transmission through biomolecules. Here we review the mechanism behind the CISS effect and its implication for processes in Biology. Specifically, three processes are discussed: long-range electron transfer, spin effects on the oxidation of water, and enantioselectivity in bio-recognition events. These phenomena imply that chirality and spin may play several important roles in biology, which have not been considered so far...
October 13, 2016: Chemical Society Reviews
Jian-Ke Sun, Markus Antonietti, Jiayin Yuan
The past decade has witnessed rapid progress in the synthesis of nanoporous organic networks or polymer frameworks for various potential applications. Generally speaking, functionalization of porous networks to add extra properties and enhance materials performance could be achieved either during the pore formation (thus a concurrent approach) or by post-synthetic modification (a sequential approach). Nanoporous organic networks which include ion pairs bound in a covalent manner are of special importance and possess extreme application profiles...
October 12, 2016: Chemical Society Reviews
Jonathan C Buttrick, Benjamin T King
Kekulenes, cycloarenes, and heterocycloarenes have attracted much attention though the years, largely due to their electronic structure. The synthesis and characterization of these interesting molecules showed that their π electrons remained delocalized in individual benzenoid-type rings rather than globally delocalized in an annulenoid fashion. This discovery further suggested that the Clar bonding model, not the Kekulé model, is the best representation for depicting the bonding of large macrocyclic aromatic compounds...
October 10, 2016: Chemical Society Reviews
Stefano Casalini, Carlo Augusto Bortolotti, Francesca Leonardi, Fabio Biscarini
Self-assembly is possibly the most effective and versatile strategy for surface functionalization. Self-assembled monolayers (SAMs) can be formed on (semi-)conductor and dielectric surfaces, and have been used in a variety of technological applications. This work aims to review the strategy behind the design and use of self-assembled monolayers in organic electronics, discuss the mechanism of interaction of SAMs in a microscopic device, and highlight the applications emerging from the integration of SAMs in an organic device...
October 7, 2016: Chemical Society Reviews
Qiang Fu, Xinhe Bao
Two-dimensional (2D) materials are characterised by their strong intraplanar bonding but weak interplanar interaction. Interfaces between neighboring 2D layers or between 2D overlayers and substrate surfaces provide intriguing confined spaces for chemical processes, which have stimulated a new area of "chemistry under 2D cover". In particular, well-defined 2D material overlayers such as graphene, hexagonal boron nitride, and transition metal dichalcogenides have been deposited on solid surfaces, which can be used as model systems to understand the new chemistry...
October 7, 2016: Chemical Society Reviews
Zijian Zhou, Jibin Song, Liming Nie, Xiaoyuan Chen
The reactive oxygen species (ROS)-mediated mechanism is the major cause underlying the efficacy of photodynamic therapy (PDT). The PDT procedure is based on the cascade of synergistic effects between light, a photosensitizer (PS) and oxygen, which greatly favors the spatiotemporal control of the treatment. This procedure has also evoked several unresolved challenges at different levels including (i) the limited penetration depth of light, which restricts traditional PDT to superficial tumours; (ii) oxygen reliance does not allow PDT treatment of hypoxic tumours; (iii) light can complicate the phototherapeutic outcomes because of the concurrent heat generation; (iv) specific delivery of PSs to sub-cellular organelles for exerting effective toxicity remains an issue; and (v) side effects from undesirable white-light activation and self-catalysation of traditional PSs...
October 5, 2016: Chemical Society Reviews
Yizhong Shen, Adam J Shuhendler, Deju Ye, Jing-Juan Xu, Hong-Yuan Chen
Two-photon excitation (TPE) nanoparticle-based photosensitizers (PSs) that combine the advantages of TPE and nanotechnology have emerged as attractive therapeutic agents for near-infrared red (NIR) light excited photodynamic therapy (PDT) for cancer treatment. TPE PDT is characterized by nonlinear absorption of two relatively low-energy photons of NIR light with the resulting emission of high-energy visible light. This high-energy light can sensitize oxygen to produce cytotoxic reactive oxygen species (ROS) and singlet oxygen ((1)O2) which can kill cancer cells...
October 5, 2016: Chemical Society Reviews
Jiayu Wan, Steven D Lacey, Jiaqi Dai, Wenzhong Bao, Michael S Fuhrer, Liangbing Hu
2D materials have attracted tremendous attention due to their unique physical and chemical properties since the discovery of graphene. Despite these intrinsic properties, various modification methods have been applied to 2D materials that yield even more exciting results in terms of tunable properties and device performance. Among all modification methods, intercalation of 2D materials has emerged as a particularly powerful tool: it provides the highest possible doping level and is capable of (ir)reversibly changing the phase of the material...
October 5, 2016: Chemical Society Reviews
Fen Wang, Songjie Yu, Xingwei Li
Organic transformations that involve direct functionalization of C-H bonds represent an attractive synthetic strategy that maximizes atom- and step-economy. With the generally high stability of C-H bonds, these processes have mostly required harsh reaction conditions, in combination with the necessity of activation of the C-H substrates and/or the coupling partners. As a class of activated coupling partners, strained or reactive rings exhibited high activity in the coupling with aryl and alkyl C-H bonds. Such a high reactivity of the rings allowed the facile construction of various new structural platforms via coupling with scission of the ring structures...
September 29, 2016: Chemical Society Reviews
Anthony W DeMartino, David F Zigler, Jon M Fukuto, Peter C Ford
The overview presented here has the goal of examining whether carbon disulfide (CS2) may play a role as an endogenously generated bioregulator and/or has therapeutic value. The neuro- and reproductive system toxicity of CS2 has been documented from its long-term use in the viscose rayon industry. CS2 is also used in the production of dithiocarbamates (DTCs), which are potent fungicides and pesticides, thus raising concern that CS2 may be an environmental toxin. However, DTCs also have recognized medicinal use in the treatment of heavy metal poisonings as well as having potency for reducing inflammation...
September 27, 2016: Chemical Society Reviews
Malay Patra, Kristof Zarschler, Hans-Jürgen Pietzsch, Holger Stephan, Gilles Gasser
Tumour pretargeting is a promising strategy for cancer diagnosis and therapy allowing for the rational use of long circulating, highly specific monoclonal antibodies (mAbs) for both non-invasive cancer radioimmunodetection (RID) and radioimmunotherapy (RIT). In contrast to conventional RID/RIT where the radionuclides and oncotropic vector molecules are delivered as presynthesised radioimmunoconjugates, the pretargeting approach is a multistep procedure that temporarily separates targeting of certain tumour-associated antigens from delivery of diagnostic or therapeutic radionuclides...
September 27, 2016: Chemical Society Reviews
Wenpei Fan, Peng Huang, Xiaoyuan Chen
Photodynamic therapy (PDT) has been applied to treat a wide range of medical conditions, including wet age-related macular degeneration psoriasis, atherosclerosis, viral infection and malignant cancers. However, the tissue penetration limitation of excitation light hinders the widespread clinical use of PDT. To overcome this "Achilles' heel", deep PDT, a novel type of phototherapy, has been developed for the efficient treatment of deep-seated diseases. Based on the different excitation sources, including near-infrared (NIR) light, X-ray radiation, and internal self-luminescence, a series of deep PDT techniques have been explored to demonstrate the advantages of deep cancer therapy over conventional PDT excited by ultraviolet-visible (UV-Vis) light...
September 26, 2016: Chemical Society Reviews
Jun Li, Dajeong Yim, Woo-Dong Jang, Juyoung Yoon
Crown ethers, discovered by the winner of the Nobel Prize Charles Pedersen, are cyclic chemical compounds that consist of a ring or multiple rings containing several ether groups that are capable of binding alkali ions. A smart fluorescent probe containing a crown ether moiety could be developed as a sensor for metal ions, anions and other bio-molecules and be further applied to monitor the relevant biological process in vivo. This review highlights recent advances which can be divided into seven parts: (i) fluorescent probes containing a simple crown ether or an aza-crown ether structure; (ii) fluorescent probes containing an azathia crown ether; (iii) fluorescent probes containing a cryptand; (iv) fluorescent probes containing two or more binding sites; (v) crown ether derivatives-metal complex assisted chemosensing of bioactive species; (vi) crown ether-based chemosensors for bioactive molecular detection; and (vii) efforts to improve biological relevance...
September 26, 2016: Chemical Society Reviews
Longwei He, Baoli Dong, Yong Liu, Weiying Lin
Fluorescence imaging is a powerful approach for noninvasive and real-time visualization and tracking of biomolecules and biological processes in living systems. The fluorescent chemosensors with dual/triple interplaying sensing mechanisms tend to provide diverse fluorescence signals or amplify the response signals, which are propitious to simultaneously track multiple analytes or to improve the selectivity and sensitivity of the chemosensors. Thus, the development of dual/triple sensing mechanism-based chemosensors has attracted great interest recently...
September 26, 2016: Chemical Society Reviews
Daniela M Arias-Rotondo, James K McCusker
Recently, the use of transition metal based chromophores as photo-induced single-electron transfer reagents in synthetic organic chemistry has opened up a wealth of possibilities for reinventing known reactions as well as creating new pathways to previously unattainable products. The workhorses for these efforts have been polypyridyl complexes of Ru(ii) and Ir(iii), compounds whose photophysics have been studied for decades within the inorganic community but never extensively applied to problems of interest to organic chemists...
September 21, 2016: Chemical Society Reviews
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"