Read by QxMD icon Read

Chemical Society Reviews

Dorian S N Parker, Ralf I Kaiser
The chemical evolution of extraterrestrial environments leads to the formation of polycyclic aromatic hydrocarbons (PAHs) via gas phase radical mediated aromatization reactions. We review that these de facto barrierless reactions are capable of forming prebiotic molecules such as nitrogen substituted PAHs (NPAHs), which represent the missing link between nitrogen bearing acyclic molecules and prebiotic nucleobases along with vitamins found in meteorites. Crucial routes leading to the incorporation of nitrogen atoms into the aromatic ring have been exposed...
December 2, 2016: Chemical Society Reviews
Xiao-Yu Yang, Li-Hua Chen, Yu Li, Joanna Claire Rooke, Clément Sanchez, Bao-Lian Su
Owing to their immense potential in energy conversion and storage, catalysis, photocatalysis, adsorption, separation and life science applications, significant interest has been devoted to the design and synthesis of hierarchically porous materials. The hierarchy of materials on porosity, structural, morphological, and component levels is key for high performance in all kinds of applications. Synthesis and applications of hierarchically structured porous materials have become a rapidly evolving field of current interest...
December 1, 2016: Chemical Society Reviews
Kripal S Lakhi, Dae-Hwan Park, Khalid Al-Bahily, Wangsoo Cha, Balasubramanian Viswanathan, Jin-Ho Choy, Ajayan Vinu
Correction for 'Mesoporous carbon nitrides: synthesis, functionalization, and applications' by Kripal S. Lakhi et al., Chem. Soc. Rev., 2017, DOI: .
November 30, 2016: Chemical Society Reviews
Timothy L Easun, Florian Moreau, Yong Yan, Sihai Yang, Martin Schröder
Porous metal-organic frameworks (MOFs) are the subject of considerable research interest because of their high porosity and capability of specific binding to small molecules, thus underpinning a wide range of materials functions such as gas adsorption, separation, drug delivery, catalysis, and sensing. MOFs, constructed by the designed assembly of metal ions and functional organic linkers, are an emerging class of porous materials with extended porous structures containing periodic binding sites. MOFs thus provide a new platform for the study of the chemistry and reactivity of small molecules in confined pores using advanced diffraction and spectroscopic techniques...
November 29, 2016: Chemical Society Reviews
Lydia Klier, Fernando Tur, Pernille H Poulsen, Karl Anker Jørgensen
Cycloaddition reactions are among the most important tools for the construction of cyclic compounds in organic synthesis, since these reactions are vital to access natural products and biologically active compounds. Organocatalysis plays an increasingly pivotal role in these reactions, often allowing several stereocenters to be selectively created and integrated in the target molecule. Among the large number of efficient types of organocatalysts available, the diarylprolinol silyl ethers have been established as one of the most frequently used in aminocatalysis allowing for novel activation modes and reaction concepts...
November 24, 2016: Chemical Society Reviews
Shin Jung C Lee, Eunju Nam, Hyuck Jin Lee, Masha G Savelieff, Mi Hee Lim
Alzheimer's disease (AD) is characterized by an imbalance between production and clearance of amyloid-β (Aβ) species. Aβ peptides can transform structurally from monomers into β-stranded fibrils via multiple oligomeric states. Among the various Aβ species, structured oligomers are proposed to be more toxic than fibrils; however, the identification of Aβ oligomers has been challenging due to their heterogeneous and metastable nature. Multiple techniques have recently helped us gain a better understanding of oligomers' assembly details and structural properties...
November 23, 2016: Chemical Society Reviews
Bingrui Song, Bin Xu
Isocyanides have a broad range of applications in multicomponent reactions such as Passerini and Ugi processes. Recent advances in metal catalysis have tremendously increased the versatility of isocyanides in organic chemistry. Suitable metal catalysts could selectively activate various C-H bonds to allow direct functionalization under mild conditions, which represents a chemical process with broad synthetic potential. The synergy from the combination of isocyanide insertion and C-H bond activation offers an efficient and powerful tool to establish complicated reactions and to construct useful substances, from which the high potential of such strategy has been convincingly demonstrated in drug discovery, organic synthesis, and materials science...
November 21, 2016: Chemical Society Reviews
Addison N Desnoyer, Jennifer A Love
Chemical transformations that result in either the formation or cleavage of carbon-heteroatom bonds are among the most important processes in the chemical sciences. Herein, we present a review on the reactivity of well-defined, late-transition metal complexes that result in the making and breaking of C-N, C-O and C-S bonds via fundamental organometallic reactions, i.e. oxidative addition, reductive elimination, insertion and elimination reactions. When appropriate, emphasis is placed on structural and spectroscopic characterization techniques, as well as mechanistic data...
November 16, 2016: Chemical Society Reviews
Hakan Inan, Muhammet Poyraz, Fatih Inci, Mark A Lifson, Murat Baday, Brian T Cunningham, Utkan Demirci
Biosensors are extensively employed for diagnosing a broad array of diseases and disorders in clinical settings worldwide. The implementation of biosensors at the point-of-care (POC), such as at primary clinics or the bedside, faces impediments because they may require highly trained personnel, have long assay times, large sizes, and high instrumental cost. Thus, there exists a need to develop inexpensive, reliable, user-friendly, and compact biosensing systems at the POC. Biosensors incorporated with photonic crystal (PC) structures hold promise to address many of the aforementioned challenges facing the development of new POC diagnostics...
November 14, 2016: Chemical Society Reviews
P Prieto, A de la Hoz, A Díaz-Ortiz, A M Rodríguez
The importance of microwave irradiation in organic synthesis today is unquestionable, but in many cases the nature of these improvements remains unknown. Exploiting the benefits that microwave irradiation has in chemistry is still hindered by a lack of understanding of the physical principles of the interaction of microwave irradiation with the components of a reaction. Moreover, dielectric properties vary with temperature and along the reaction coordinate and this makes the situation more complex. Experimental determinations employed to date in Microwave-Assisted Organic Chemistry (MAOS) are characterized by the importance of thermal heating...
November 14, 2016: Chemical Society Reviews
Sandeep Kumar, Ruma Rani, Neeraj Dilbaghi, K Tankeshwar, Ki-Hyun Kim
Remarkable advances have been achieved in modern material technology, especially in device fabrication, and these have facilitated the use of diverse materials in various applications. Carbon nanotubes (CNTs) are being successfully implemented in drug delivery, sensing, water purification, composite materials, and bone scaffolds. Thus, CNTs must meet a wide range of criteria such as surface modification, high aspect ratio, desired conductivity, high porosity and loading, non-toxicity, specificity, and selectivity, and compatibility for device fabrication...
November 14, 2016: Chemical Society Reviews
Yuan-Biao Huang, Jun Liang, Xu-Sheng Wang, Rong Cao
Metal-organic frameworks (MOFs) are porous crystalline materials constructed from metal ions or clusters and multidentate organic ligands. Recently, the use of MOFs or MOF composites as catalysts for synergistic catalysis and tandem reactions has attracted increasing attention due to their tunable open metal centres, functional organic linkers, and active guest species in their pores. In this review, the applications of MOFs with multiple active sites in synergistic organic catalysis, photocatalysis and tandem reactions are discussed...
November 14, 2016: Chemical Society Reviews
Zhiguo Xia, Andries Meijerink
Garnets have the general formula of A3B2C3O12 and form a wide range of inorganic compounds, occurring both naturally (gemstones) and synthetically. Their physical and chemical properties are closely related to the structure and composition. In particular, Ce(3+)-doped garnet phosphors have a long history and are widely applied, ranging from flying spot cameras, lasers and phosphors in fluorescent tubes to more recent applications in white light LEDs, as afterglow materials and scintillators for medical imaging...
November 11, 2016: Chemical Society Reviews
Christina H M van Oversteeg, Hoang Q Doan, Frank M F de Groot, Tanja Cuk
X-ray absorption studies of the geometric and electronic structure of primarily heterogeneous Co, Ni, and Mn based water oxidation catalysts are reviewed. The X-ray absorption near edge and extended X-ray absorption fine structure studies of the metal K-edge, characterize the metal oxidation state, metal-oxygen bond distance, metal-metal distance, and degree of disorder of the catalysts. These properties guide the coordination environment of the transition metal oxide radical that localizes surface holes and is required to oxidize water...
November 11, 2016: Chemical Society Reviews
Kai Zhao, Liang Shen, Zhi-Liang Shen, Teck-Peng Loh
Transition metal-catalyzed cross-coupling reactions using organoindium reagents have witnessed rapid and comprehensive development in the past two decades. In comparison with many other organometallic reagents, the preparation of organoindium reagents and the subsequent transition metal-catalyzed cross-coupling reactions with various electrophiles showed a wider tolerance to important functional groups and protic solvents. In addition, in many cases, cross-coupling reactions employing organoindium reagents exhibited remarkable chemo- and stereoselectivity...
November 9, 2016: Chemical Society Reviews
John E Moses, Adam D Moorhouse
Correction for 'The growing applications of click chemistry' by John E. Moses et al., Chem. Soc. Rev., 2007, 36, 1249-1262.
November 3, 2016: Chemical Society Reviews
Kripal S Lakhi, Dae-Hwan Park, Khalid Al-Bahily, Wangsoo Cha, Balasubramanian Viswanathan, Jin-Ho Choy, Ajayan Vinu
Mesoporous carbon nitrides (MCNs) with large surface areas and uniform pore diameters are unique semiconducting materials and exhibit highly versatile structural and excellent physicochemical properties, which promote their application in diverse fields such as metal free catalysis, photocatalytic water splitting, energy storage and conversion, gas adsorption, separation, and even sensing. These fascinating MCN materials can be obtained through the polymerization of different aromatic and/or aliphatic carbons and high nitrogen containing molecular precursors via hard and/or soft templating approaches...
November 3, 2016: Chemical Society Reviews
Yong-Jun Yuan, Zhen-Tao Yu, Da-Qin Chen, Zhi-Gang Zou
Solar H2 generation from water has been intensively investigated as a clean method to convert solar energy into hydrogen fuel. During the past few decades, many studies have demonstrated that metal complexes can act as efficient photoactive materials for photocatalytic H2 production. Here, we review the recent progress in the application of metal-complex chromophores to solar-to-H2 conversion, including metal-complex photosensitizers and supramolecular photocatalysts. A brief overview of the fundamental principles of photocatalytic H2 production is given...
November 3, 2016: Chemical Society Reviews
Dechao Niu, Yongsheng Li, Jianlin Shi
As a member of the organic-inorganic hybrid family, silica/organosilica cross-linked block copolymer micelles are becoming increasingly attractive due to the combined features of excellent self-assembly properties of amphiphilic block copolymers and the high stability and the easy surface modification of silica/organosilica components. Compared to the traditional cross-linking route with organic components, the silica/organosilica cross-linking approach could offer more advantages, such as quick reaction under mild conditions, a much stronger barrier to the diffusion of both encapsulated small molecules and functional nanoparticles and the substantial improvement in the stability of the whole micelles against the ambient environment...
November 2, 2016: Chemical Society Reviews
Vanesa Marcos, José Alemán
Chiral secondary amines are some of the most commonly used kinds of catalysts. They have become a reliable tool for the α- and β-activation of carbonyl compounds, via HOMO, SOMO or LUMO activation pathways. Recently, chemists have turned their attention to the development of novel organocatalytic strategies for remote functionalisation, targeting stereocentres even more distant from the catalyst-activation site, through dienamine, trienamine, and vinylogous iminium ion pathways (γ-, ε- and δ-positions, respectively)...
November 2, 2016: Chemical Society Reviews
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"