Read by QxMD icon Read

Annual Review of Genetics

Ilia A Droujinine, Norbert Perrimon
Studies in mammals and Drosophila have demonstrated the existence and significance of secreted factors involved in communication between distal organs. In this review, primarily focusing on Drosophila, we examine the known interorgan communication factors and their functions, physiological inducers, and integration in regulating physiology. Moreover, we describe how organ-sensing screens in Drosophila can systematically identify novel conserved interorgan communication factors. Finally, we discuss how interorgan communication enabled and evolved as a result of specialization of organs...
October 10, 2016: Annual Review of Genetics
Alan S L Wong, Gigi C G Choi, Timothy K Lu
High-order interactions among components of interconnected genetic networks regulate complex functions in biological systems, but deciphering these interactions is challenging. New strategies are emerging to decode these combinatorial genetic interactions across a wide range of organisms. Here, we review advances in multiplexed and combinatorial genetic perturbation technologies and high-throughput profiling platforms that are enabling the systematic dissection of complex genetic networks. These rapidly evolving technologies are being harnessed to probe combinatorial gene functions in functional genomics studies and have the potential to advance our understanding of how genetic networks regulate sophisticated biological phenotypes, to generate novel therapeutic strategies, and to enable the engineering of complex artificial gene networks...
October 6, 2016: Annual Review of Genetics
Lucas Sjulson, Daniela Cassataro, Shamik DasGupta, Gero Miesenböck
Genetically encoded tools for visualizing and manipulating neurons in vivo have led to significant advances in neuroscience, in large part because of the ability to target expression to specific cell populations of interest. Current methods enable targeting based on marker gene expression, development, anatomical projection pattern, synaptic connectivity, and recent activity as well as combinations of these factors. Here, we review these methods, focusing on issues of practical implementation as well as areas for future improvement...
October 6, 2016: Annual Review of Genetics
Leandro Quadrana, Vincent Colot
Transgenerational epigenetics is defined in opposition to developmental epigenetics and implies an absence of resetting of epigenetic states between generations. Unlike mammals, plants appear to be particularly prone to this type of inheritance. In this review, we summarize our knowledge about transgenerational epigenetics in plants, which entails heritable changes in DNA methylation. We emphasize the role of transposable elements and other repeat sequences in the creation of epimutable alleles. We also argue that because reprogramming of DNA methylation across generations seems limited in plants, the inheritance of DNA methylation defects results from the failure to reinforce rather than reset this modification during sexual reproduction...
October 6, 2016: Annual Review of Genetics
Juliane Macheleidt, Derek J Mattern, Juliane Fischer, Tina Netzker, Jakob Weber, Volker Schroeckh, Vito Valiante, Axel A Brakhage
Fungi have the capability to produce a tremendous number of so-called secondary metabolites, which possess a multitude of functions, e.g., communication signals during coexistence with other microorganisms, virulence factors during pathogenic interactions with plants and animals, and in medical applications. Therefore, research on this topic has intensified significantly during the past 10 years and thus knowledge of regulatory mechanisms and the understanding of the role of secondary metabolites have drastically increased...
October 5, 2016: Annual Review of Genetics
Alvaro Molina-Cruz, Martine M Zilversmit, Daniel E Neafsey, Daniel L Hartl, Carolina Barillas-Mury
Plasmodium falciparum malaria remains a devastating public health problem. Recent discoveries have shed light on the origin and evolution of Plasmodium parasites and their interactions with their vertebrate and mosquito hosts. P. falciparum malaria originated in Africa from a single horizontal transfer between an infected gorilla and a human, and became global as the result of human migration. Today, P. falciparum malaria is transmitted worldwide by more than 70 different anopheline mosquito species. Recent studies indicate that the mosquito immune system can be a barrier to malaria transmission and that the P...
October 3, 2016: Annual Review of Genetics
James E Haber
Double-strand breaks (DSBs) pose a severe challenge to genome integrity; consequently, cells have developed efficient mechanisms to repair DSBs through several pathways of homologous recombination and other nonhomologous end-joining processes. Much of our understanding of these pathways has come from the analysis of site-specific DSBs created by the HO endonuclease in the budding yeast Saccharomyces cerevisiae. I was fortunate to get in on the ground floor of analyzing the fate of synchronously induced DSBs through the study of what I coined "in vivo biochemistry...
October 3, 2016: Annual Review of Genetics
Chung-I Wu, Hurng-Yi Wang, Shaoping Ling, Xuemei Lu
Although tumorigenesis has been accepted as an evolutionary process (20, 102), many forces may operate differently in cancers than in organisms, as they evolve at vastly different time scales. Among such forces, natural selection, here defined as differential cellular proliferation among distinct somatic cell genotypes, is particularly interesting because its action might be thwarted in multicellular organisms (20, 29). In this review, selection is analyzed in two stages of cancer evolution: Stage I is the evolution between tumors and normal tissues, and Stage II is the evolution within tumors...
September 28, 2016: Annual Review of Genetics
Josef Loidl
Comparisons among a variety of eukaryotes have revealed considerable variability in the structures and processes involved in their meiosis. Nevertheless, conventional forms of meiosis occur in all major groups of eukaryotes, including early-branching protists. This finding confirms that meiosis originated in the common ancestor of all eukaryotes and suggests that primordial meiosis may have had many characteristics in common with conventional extant meiosis. However, it is possible that the synaptonemal complex and the delicate crossover control related to its presence were later acquisitions...
September 28, 2016: Annual Review of Genetics
Daniel B Müller, Christine Vogel, Yang Bai, Julia A Vorholt
Plants do not grow as axenic organisms in nature, but host a diverse community of microorganisms, termed the plant microbiota. There is an increasing awareness that the plant microbiota plays a role in plant growth and can provide protection from invading pathogens. Apart from intense research on crop plants, Arabidopsis is emerging as a valuable model system to investigate the drivers shaping stable bacterial communities on leaves and roots and as a tool to decipher the intricate relationship among the host and its colonizing microorganisms...
September 14, 2016: Annual Review of Genetics
Philip C Bevilacqua, Laura E Ritchey, Zhao Su, Sarah M Assmann
Single-stranded RNA molecules fold into extraordinarily complicated secondary and tertiary structures as a result of intramolecular base pairing. In vivo, these RNA structures are not static. Instead, they are remodeled in response to changes in the prevailing physicochemical environment of the cell and as a result of intramolecular base pairing and interactions with RNA-binding proteins. Remarkable technical advances now allow us to probe RNA secondary structure at single-nucleotide resolution and genome wide, both in vitro and in vivo...
September 14, 2016: Annual Review of Genetics
Stephen Gray, Paula E Cohen
Meiosis, the mechanism of creating haploid gametes, is a complex cellular process observed across sexually reproducing organisms. Fundamental to meiosis is the process of homologous recombination, whereby DNA double-strand breaks are introduced into the genome and are subsequently repaired to generate either noncrossovers or crossovers. Although homologous recombination is essential for chromosome pairing during prophase I, the resulting crossovers are critical for maintaining homolog interactions and enabling accurate segregation at the first meiotic division...
September 14, 2016: Annual Review of Genetics
J Chris Pires, Gavin C Conant
The complex manner in which organisms respond to changes in their gene dosage has long fascinated geneticists. Oddly, although the existence of dominance implies that dosage reductions often have mild phenotypes, extra copies of whole chromosomes (aneuploidy) are generally strongly deleterious. Even more paradoxically, an extra copy of the genome is better tolerated than is aneuploidy. We review the resolution of this paradox, highlighting the roles of biochemistry, protein aggregation, and disruption of cellular microstructure in that explanation...
September 12, 2016: Annual Review of Genetics
John L Bowman, Keiko Sakakibara, Chihiro Furumizu, Tom Dierschke
The life cycles of eukaryotes alternate between haploid and diploid phases, which are initiated by meiosis and gamete fusion, respectively. In both ascomycete and basidiomycete fungi and chlorophyte algae, the haploid-todiploid transition is regulated by a pair of paralogous homeodomain protein encoding genes. That a common genetic program controls the haploid-todiploid transition in phylogenetically disparate eukaryotic lineages suggests this may be the ancestral function for homeodomain proteins. Multicellularity has evolved independently in many eukaryotic lineages in either one or both phases of the life cycle...
September 8, 2016: Annual Review of Genetics
Stephanie A Yazinski, Lee Zou
The ATR (ATM and rad3-related) pathway is crucial for proliferation, responding to DNA replication stress and DNA damage. This critical signaling pathway is carefully orchestrated through a multistep process requiring initial priming of ATR prior to damage, recruitment of ATR to DNA damage lesions, activation of ATR signaling, and, finally, modulation of ATR activity through a variety of post-translational modifications. Following activation, ATR functions in several vital cellular processes, including suppression of replication origin firing, promotion of deoxynucleotide synthesis and replication fork restart, prevention of double-stranded DNA break formation, and avoidance of replication catastrophe and mitotic catastrophe...
September 8, 2016: Annual Review of Genetics
Lauren D Palmer, Eric P Skaar
Transition metals are required trace elements for all forms of life. Due to their unique inorganic and redox properties, transition metals serve as cofactors for enzymes and other proteins. In bacterial pathogenesis, the vertebrate host represents a rich source of nutrient metals, and bacteria have evolved diverse metal acquisition strategies. Host metal homeostasis changes dramatically in response to bacterial infections, including production of metal sequestering proteins and the bombardment of bacteria with toxic levels of metals...
September 7, 2016: Annual Review of Genetics
Enrica Bianchi, Gavin J Wright
Fertilization is the culminating event of sexual reproduction, which involves the union of the sperm and egg to form a single, genetically distinct organism. Despite the fundamental role of fertilization, the basic mechanisms involved have remained poorly understood. However, these mechanisms must involve an ordered schedule of cellular recognition events between the sperm and egg to ensure successful fusion. In this article, we review recent progress in our molecular understanding of mammalian fertilization, highlighting the areas in which genetic approaches have been particularly informative and focusing especially on the roles of secreted and cell surface proteins, expressed in a sex-specific manner, that mediate sperm-egg interactions...
September 2, 2016: Annual Review of Genetics
Sonja Grath, John Parsch
Methods of transcriptional profiling have made it possible to compare gene expression between females and males on a genome-wide scale. Such studies have revealed that sex-biased gene expression is abundant in many species, although its extent may vary greatly among tissues or developmental stages. In species with genetic sex determination, sex chromosome-specific processes, such as dosage compensation, also may influence sex-biased gene expression. Sex-biased genes, especially those with male-biased expression, often show elevated rates of both protein sequence and gene expression divergence between species, which could have a number of causes, including sexual selection, sexual antagonism, and relaxed selective constraint...
August 26, 2016: Annual Review of Genetics
Rajan Gogna, Kevin Shee, Eduardo Moreno
Tissue growth and regeneration are autonomous, stem-cell-mediated processes in which stem cells within the organ self-renew and differentiate to create new cells, leading to new tissue. The processes of growth and regeneration require communication and interplay between neighboring cells. In particular, cell competition, which is a process in which viable cells are actively eliminated by more competitive cells, has been increasingly implicated to play an important role. Here, we discuss the existing literature regarding the current landscape of cell competition, including classical pathways and models, fitness fingerprint mechanisms, and immune system mechanisms of cell competition...
2015: Annual Review of Genetics
Victoria H Meller, Sonal S Joshi, Nikita Deshpande
Noncoding RNAs (ncRNAs) are remarkably powerful, flexible, and pervasive cellular regulators. The involvement of these molecules in virtually all aspects of eukaryotic chromatin function is notable. Long and short ncRNAs play broadly complementary roles in these processes. Short ncRNAs underlie a programmable system of chromatin modification that silences mobile elements, identifies boundaries, and initiates the formation of constitutive heterochromatin in yeast. In contrast, long noncoding RNAs (lncRNAs) enforce developmentally appropriate expression and switch gene expression programs...
2015: Annual Review of Genetics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"