Read by QxMD icon Read

Current Topics in Microbiology and Immunology

Robert N Kirchdoerfer, Hal Wasserman, Gaya K Amarasinghe, Erica Ollmann Saphire
In this chapter, we describe what is known thus far about the structures and functions of the handful of proteins encoded by filovirus genomes. Amongst the fascinating findings of the last decade is the plurality of functions and structures that these polypeptides can adopt. Many of the encoded proteins can play multiple, distinct roles in the virus life cycle, although the mechanisms by which these functions are determined and controlled remain mostly veiled. Further, some filovirus proteins are multistructural: adopting different oligomeric assemblies and sometimes, different tertiary structures to achieve their separate, and equally essential functions...
August 10, 2017: Current Topics in Microbiology and Immunology
Werner Slenczka
The first reported filovirus outbreak occurred in August 1967, when laboratory workers in Marburg and Frankfurt, Germany, and Belgrade, Yugoslavia (now Serbia) became infected with an unknown highly pathogenic agent. The disease was characterized by high fever, malaise, rash, hemorrhagic and tetanic manifestations, and high lethality, amounting to 25%. The disease was introduced to Europe by grivets (Chlorocebus aethiops), which were used for biomedical research and vaccine production. The causative agent, Marburg virus, was isolated and identified by scientists of the University of Marburg, Germany in cooperation with specialists for viral electron microscopy at the Bernhard Nocht Institute in Hamburg, Germany...
August 2, 2017: Current Topics in Microbiology and Immunology
Brian R Amman, Robert Swanepoel, Stuart T Nichol, Jonathan S Towner
Filoviruses can cause severe and often fatal disease in humans. To date, there have been 47 outbreaks resulting in more than 31,500 cases of human illness and over 13,200 reported deaths. Since their discovery, researchers from many scientific disciplines have worked to better understand the natural history of these deadly viruses. Citing original research wherever possible, this chapter reviews laboratory and field-based studies on filovirus ecology and summarizes efforts to identify where filoviruses persist in nature, how virus is transmitted to other animals and ultimately, what drivers cause spillover to human beings...
July 15, 2017: Current Topics in Microbiology and Immunology
Alexandra Papaioannou, Eric Chevet
In the tumor microenvironment, cancer cells encounter both external and internal factors that can lead to the accumulation of improperly folded proteins in the Endoplasmic Reticulum (ER) lumen, thus causing ER stress. When this happens, an adaptive mechanism named the Unfolded Protein Response (UPR) is triggered to help the cell cope with this change and restore protein homeostasis in the ER. Sequentially, one would expect that the activation of the three UPR branches, driven namely by IRE1, PERK, and ATF6, are crucial for the adaptation of cancer cells to the changing environment and thus for their survival and further propagation...
July 15, 2017: Current Topics in Microbiology and Immunology
Angela L Rasmussen
Ebola virus (EBOV) is a highly pathogenic emerging virus that represents a serious threat to global public health and a major priority for biodefense. The 2014 West African outbreak demonstrated the potential of EBOV to cause an epidemic affecting thousands of people. The severity of disease and high case fatality rate of EBOV is largely due to the host response elicited by the virus. EBOV infection hijacks a number of host pathways to carry out replication and stimulate potent inflammatory responses, while simultaneously subverting the host antiviral immune response...
July 15, 2017: Current Topics in Microbiology and Immunology
Hiromi Kubagawa, Christopher M Skopnik, Jakob Zimmermann, Pawel Durek, Hyun-Dong Chang, Esther Yoo, Luigi F Bertoli, Kazuhito Honjo, Andreas Radbruch
Since the bona fide Fc receptor for IgM antibody (FcµR) was identified eight years ago, much progress has been made in defining its biochemical nature, cellular distribution, and effector function. However, there are clearly conflicting results, especially about the cellular distribution and function of murine FcµR. In this short article, we will discuss recent findings from us and other investigators along with our interpretations and comments that may help to resolve the existing puzzles and should open new avenues of investigation...
July 13, 2017: Current Topics in Microbiology and Immunology
Simon J Tavernier, Bart N Lambrecht, Sophie Janssens
The endoplasmic reticulum (ER) is the primary site for the folding of proteins destined for the membranous compartment and the extracellular space. This elaborate function is coordinated by the unfolded protein response (UPR), a stress-activated cellular program that governs proteostasis. In multicellular organisms, cells have adopted specialized functions, which required functional adaptations of the ER and its UPR. Recently, it has become clear that in immune cells, the UPR has acquired functions that stretch far beyond its original scope...
July 13, 2017: Current Topics in Microbiology and Immunology
Peter I Lobo
Natural IgM autoantibodies (IgM-NAA) are rapidly produced to inhibit pathogens and abrogate inflammation mediated by invading microorganisms and host neoantigens. IgM-NAA achieve this difficult task by being polyreactive with low binding affinity but with high avidity, characteristics that allow these antibodies to bind antigenic determinants shared by pathogens and neoantigens. Hence the same clones of natural IgM can bind and mask host neoantigens as well as inhibit microorganisms. In addition, IgM-NAA regulate the inflammatory response via mechanisms involving binding of IgM to apoptotic cells to enhance their removal and binding of IgM to live leukocytes to regulate their function...
July 12, 2017: Current Topics in Microbiology and Immunology
Rafael K Campos, Mariano A Garcia-Blanco, Shelton S Bradrick
Identification and analysis of viral host factors is a growing area of research which aims to understand the how viruses molecularly interface with the host cell. Investigations into flavivirus-host interactions has led to new discoveries in viral and cell biology, and will potentially bolster strategies to control the important diseases caused by these pathogens. Here, we address the current knowledge of prominent host factors required for the flavivirus life-cycle and mechanisms by which they promote infection...
July 9, 2017: Current Topics in Microbiology and Immunology
Ronald Swanstrom, William D Graham, Shuntai Zhou
The surface envelope protein of any virus is major determinant of the host cell that is infected and as a result a major determinant of viral pathogenesis. Retroviruses have a single surface protein named Env. It is a trimer of heterodimers and is responsible for binding to the host cell receptor and mediating fusion between the viral and host membranes. In this review we will discuss the history of the discovery of the avian leukosis virus (ALV) and human immunodeficiency virus type 1 (HIV-1) Env proteins and their receptor specificity, comparing the many differences but having some similarities...
July 9, 2017: Current Topics in Microbiology and Immunology
Kerstin Schott, Maximilian Riess, Renate König
Cells use an elaborate innate immune surveillance and defense system against virus infections. Here, we discuss recent studies that reveal how HIV-1 is sensed by the innate immune system. Furthermore, we present mechanisms on the counteraction of HIV-1. We will provide an overview how HIV-1 actively utilizes host cellular factors to avoid sensing. Additionally, we will summarize effectors of the innate response that provide an antiviral cellular state. HIV-1 has evolved passive mechanism to avoid restriction and to regulate the innate response...
July 8, 2017: Current Topics in Microbiology and Immunology
Judith Olejnik, Adam J Hume, Daisy W Leung, Gaya K Amarasinghe, Christopher F Basler, Elke Mühlberger
This chapter describes the various strategies filoviruses use to escape host immune responses with a focus on innate immune and cell death pathways. Since filovirus replication can be efficiently blocked by interferon (IFN), filoviruses have evolved mechanisms to counteract both type I IFN induction and IFN response signaling pathways. Intriguingly, marburg- and ebolaviruses use different strategies to inhibit IFN signaling. This chapter also summarizes what is known about the role of IFN-stimulated genes (ISGs) in filovirus infection...
July 8, 2017: Current Topics in Microbiology and Immunology
Roland Benz, Holger Barth
A-B types of toxins are among the most potent bacterial protein toxins produced by gram-positive bacteria. Prominent examples are the tripartite anthrax toxin of Bacillus anthracis and the different A-B type clostridial toxins that are the causative agents of severe human and animal diseases and could serve as biological weapons. The components of all these toxins comprise one binding/transport (B) subunit and one or two separate, non-linked enzymatically active (A) subunits. The A and B subunits are separately produced and secreted by the pathogenic gram-positive bacteria and must assemble on the surface of eukaryotic target cells to form biologically active toxin complexes...
July 4, 2017: Current Topics in Microbiology and Immunology
Meaghan H Hancock, Rebecca L Skalsky
Non-coding RNAs (ncRNAs) play essential roles in multiple aspects of the life cycles of herpesviruses and contribute to lifelong persistence of herpesviruses within their respective hosts. In this chapter, we discuss the types of ncRNAs produced by the different herpesvirus families during infection, some of the cellular ncRNAs manipulated by these viruses, and the overall contributions of ncRNAs to the viral life cycle, influence on the host environment, and pathogenesis.
July 4, 2017: Current Topics in Microbiology and Immunology
Cameron R Stewart, Celine Deffrasnes, Chwan Hong Foo, Andrew G D Bean, Lin-Fa Wang
Hendra and Nipah viruses (family Paramyxoviridae, genus Henipavirus) are zoonotic RNA viruses that cause lethal disease in humans and are designated as Biosafety Level 4 (BSL4) agents. Moreover, henipaviruses belong to the same group of viruses that cause disease more commonly in humans such as measles, mumps and respiratory syncytial virus. Due to the relatively recent emergence of the henipaviruses and the practical constraints of performing functional genomics studies at high levels of containment, our understanding of the henipavirus infection cycle is incomplete...
July 4, 2017: Current Topics in Microbiology and Immunology
Carlo M Croce
This paper describes how we discovered the juxtaposition of the MYC gene to the human immunoglobulin loci and how that finding was extended to characterize molecularly the t(14;18) chromosome translocation of follicular lymphoma and to clone the BCL2 gene. BCL2 is also overexpressed in CLL, the most common human leukemia. We discovered that most of human CLLs have a deletion of two microRNAs residing in the same polycistronic RNA, miR-15a and miR-16-1, and that these two microRNAs are negative regulators of BCL2...
June 27, 2017: Current Topics in Microbiology and Immunology
John Connor, Gary Kobinger, Gene Olinger
Therapies for filovirus infections are urgently needed. The paradoxical issue facing therapies is the need for rigorous safety and efficacy testing, adhering to the principle tenant of medicine to do no harm, while responding to the extreme for a treatment option during an outbreak. Supportive care remains a primary goal for infected patients. Years of research into filoviruses has provided possible medical interventions ranging from direct antivirals, host-factor supportive approaches, and passive immunity...
June 27, 2017: Current Topics in Microbiology and Immunology
Satoko Yamaoka, Logan Banadyga, Mike Bray, Hideki Ebihara
Filovirus small animal disease models have so far been developed in laboratory mice, guinea pigs, and hamsters. Since immunocompetent rodents do not exhibit overt signs of disease following infection with wild-type filoviruses isolated from humans, rodent models have been established using adapted viruses produced through sequential passage in rodents. Rodent-adapted viruses target the same cells/tissues as the wild-type viruses, making rodents invaluable basic research tools for studying filovirus pathogenesis...
June 27, 2017: Current Topics in Microbiology and Immunology
Jens H Kuhn
The International Committee on Taxonomy of Viruses (ICTV) currently recognizes three genera and seven species as part of the mononegaviral family Filoviridae. Eight distinct filoviruses (Bundibugyo virus, Ebola virus, Lloviu virus, Marburg virus, Ravn virus, Reston virus, Sudan virus, and Taï Forest virus) have been assigned to these seven species. This chapter briefly summarizes the status quo of filovirus classification and focuses on the importance of differentiating between filoviral species and filoviruses and the correct use of taxonomic and vernacular filovirus names and abbreviations in written and oral discourse...
June 27, 2017: Current Topics in Microbiology and Immunology
Daniela C Monaco, Zachary Ende, Eric Hunter
In this chapter, we will review recent research on the virology of HIV-1 transmission and the impact of the transmitted virus genotype on subsequent disease progression. In most instances of HIV-1 sexual transmission, a single genetic variant, or a very limited number of variants from the diverse viral quasi-species present in the transmitting partner establishes systemic infection. Transmission involves both stochastic and selective processes, such that in general a minority variant in the donor is transmitted...
June 27, 2017: Current Topics in Microbiology and Immunology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"