journal
MENU ▼
Read by QxMD icon Read
search

Multivariate Behavioral Research

journal
https://www.readbyqxmd.com/read/29781710/a-computationally-more-efficient-and-more-accurate-stepwise-approach-for-correcting-for-sampling-error-and-measurement-error
#1
Steffen Zitzmann
Over the last decade or two, multilevel structural equation modeling (ML-SEM) has become a prominent modeling approach in the social sciences because it allows researchers to correct for sampling and measurement errors and thus to estimate the effects of Level 2 (L2) constructs without bias. Because the latent variable modeling software Mplus uses maximum likelihood (ML) by default, many researchers in the social sciences have applied ML to obtain estimates of L2 regression coefficients. However, one drawback of ML is that covariance matrices of the predictor variables at L2 tend to be degenerate, and thus, estimates of L2 regression coefficients tend to be rather inaccurate when sample sizes are small...
May 21, 2018: Multivariate Behavioral Research
https://www.readbyqxmd.com/read/29771150/assessment-of-multiple-membership-multilevel-models-an-application-to-interviewer-effects-on-nonresponse
#2
Gabriele B Durrant, Rebecca Vassallo, Peter W F Smith
Multilevel multiple membership models account for situations where lower level units are nested within multiple higher level units from the same classification. Not accounting correctly for such multiple membership structures leads to biased results. The use of a multiple membership model requires selection of weights reflecting the hypothesized contribution of each level two unit and their relationship to the level one outcome. The Deviance Information Criterion (DIC) has been proposed to identify such weights...
May 17, 2018: Multivariate Behavioral Research
https://www.readbyqxmd.com/read/29757002/a-gradual-effects-model-for-single-case-designs
#3
Daniel M Swan, James E Pustejovsky
Single-case designs are a class of repeated measures experiments used to evaluate the effects of interventions for small or specialized populations, such as individuals with low-incidence disabilities. There has been growing interest in systematic reviews and syntheses of evidence from single-case designs, but there remains a need to further develop appropriate statistical models and effect sizes for data from the designs. We propose a novel model for single-case data that exhibit nonlinear time trends created by an intervention that produces gradual effects, which build up and dissipate over time...
May 14, 2018: Multivariate Behavioral Research
https://www.readbyqxmd.com/read/29718726/using-generalizability-theory-to-disattenuate-correlation-coefficients-for-multiple-sources-of-measurement-error
#4
Walter P Vispoel, Carrie A Morris, Murat Kilinc
Over the years, research in the social sciences has been dominated by reporting of reliability coefficients that fail to account for key sources of measurement error. Use of these coefficients, in turn, to correct for measurement error can hinder scientific progress by misrepresenting true relationships among the underlying constructs being investigated. In the research reported here, we addressed these issues using generalizability theory (G-theory) in both traditional and new ways to account for the three key sources of measurement error (random-response, specific-factor, and transient) that affect scores from objectively scored measures...
May 2, 2018: Multivariate Behavioral Research
https://www.readbyqxmd.com/read/29683757/addendum-to-heterogeneity-coefficients-for-mahalanobis-d-as-a-multivariate-effect-size
#5
Marco Del Giudice
In a previous paper (Del Giudice, 2017 [Heterogeneity coefficients for Mahalanobis' D as a multivariate effect size. Multivariate Behavioral Research, 52, 216-221]), I proposed two heterogeneity coefficients for Mahalanobis' D based on the Gini coefficient, labeled H and EPV. In this addendum I discuss the limitations of the original approach and note that the proposed indices may overestimate heterogeneity under certain conditions. I then describe two revised indices H2 and EPV2 , and illustrate the difference between the original and revised indices with some real-world data sets...
April 23, 2018: Multivariate Behavioral Research
https://www.readbyqxmd.com/read/29683725/reliabilities-of-intraindividual-variability-indicators-with-autocorrelated-longitudinal-data-implications-for-longitudinal-study-designs
#6
Han Du, Lijuan Wang
Intraindividual variability can be measured by the intraindividual standard deviation ([Formula: see text]), intraindividual variance ([Formula: see text]), estimated hth-order autocorrelation coefficient ([Formula: see text]), and mean square successive difference ([Formula: see text]). Unresolved issues exist in the research on reliabilities of intraindividual variability indicators: (1) previous research only studied conditions with 0 autocorrelations in the longitudinal responses; (2) the reliabilities of [Formula: see text] and [Formula: see text] have not been studied...
April 23, 2018: Multivariate Behavioral Research
https://www.readbyqxmd.com/read/29683724/age-differences-in-day-to-day-speed-accuracy-tradeoffs-results-from-the-cogito-study
#7
Paolo Ghisletta, Emilie Joly-Burra, Stephen Aichele, Ulman Lindenberger, Florian Schmiedek
We examined adult age differences in day-to-day adjustments in speed-accuracy tradeoffs (SAT) on a figural comparison task. Data came from the COGITO study, with over 100 younger and 100 older adults, assessed for over 100 days. Participants were given explicit feedback about their completion time and accuracy each day after task completion. We applied a multivariate vector auto-regressive model of order 1 to the daily mean reaction time (RT) and daily accuracy scores together, within each age group. We expected that participants adjusted their SAT if the two cross-regressive parameters from RT (or accuracy) on day t-1 of accuracy (or RT) on day t were sizable and negative...
April 23, 2018: Multivariate Behavioral Research
https://www.readbyqxmd.com/read/29683723/model-fit-and-item-factor-analysis-overfactoring-underfactoring-and-a-program-to-guide-interpretation
#8
D Angus Clark, Ryan P Bowles
In exploratory item factor analysis (IFA), researchers may use model fit statistics and commonly invoked fit thresholds to help determine the dimensionality of an assessment. However, these indices and thresholds may mislead as they were developed in a confirmatory framework for models with continuous, not categorical, indicators. The present study used Monte Carlo simulation methods to investigate the ability of popular model fit statistics (chi-square, root mean square error of approximation, the comparative fit index, and the Tucker-Lewis index) and their standard cutoff values to detect the optimal number of latent dimensions underlying sets of dichotomous items...
April 23, 2018: Multivariate Behavioral Research
https://www.readbyqxmd.com/read/29683722/recursive-partitioning-with-nonlinear-models-of-change
#9
Gabriela Stegmann, Ross Jacobucci, Sarfaraz Serang, Kevin J Grimm
In this article, we introduce nonlinear longitudinal recursive partitioning (nLRP) and the R package longRpart2 to carry out the analysis. This method implements recursive partitioning (also known as decision trees) in order to split data based on individual- (i.e., cluster) level covariates with the goal of predicting differences in nonlinear longitudinal trajectories. At each node, a user-specified linear or nonlinear mixed-effects model is estimated. This method is an extension of Abdolell et al.'s (2002) longitudinal recursive partitioning while permitting a nonlinear mixed-effects model in addition to a linear mixed-effects model in each node...
April 23, 2018: Multivariate Behavioral Research
https://www.readbyqxmd.com/read/29683720/on-measuring-and-modeling-physiological-synchrony-in-dyads
#10
Jonathan Lee Helm, Jonas G Miller, Sarah Kahle, Natalie R Troxel, Paul D Hastings
Physiological synchrony within a dyad, or the degree of temporal correspondence between two individuals' physiological systems, has become a focal area of psychological research. Multiple methods have been used for measuring and modeling physiological synchrony. Each method extracts and analyzes different types of physiological synchrony, where 'type' refers to a specific manner through which two different physiological signals may correlate. Yet, to our knowledge, there is no documentation of the different methods, how each method corresponds to a specific type of synchrony, and the statistical assumptions embedded within each method...
April 23, 2018: Multivariate Behavioral Research
https://www.readbyqxmd.com/read/29658809/the-gaussian-graphical-model-in-cross-sectional-and-time-series-data
#11
Sacha Epskamp, Lourens J Waldorp, René Mõttus, Denny Borsboom
We discuss the Gaussian graphical model (GGM; an undirected network of partial correlation coefficients) and detail its utility as an exploratory data analysis tool. The GGM shows which variables predict one-another, allows for sparse modeling of covariance structures, and may highlight potential causal relationships between observed variables. We describe the utility in three kinds of psychological data sets: data sets in which consecutive cases are assumed independent (e.g., cross-sectional data), temporally ordered data sets (e...
April 16, 2018: Multivariate Behavioral Research
https://www.readbyqxmd.com/read/29624093/robustness-of-parameter-estimation-to-assumptions-of-normality-in-the-multidimensional-graded-response-model
#12
Chun Wang, Shiyang Su, David J Weiss
A central assumption that is implicit in estimating item parameters in item response theory (IRT) models is the normality of the latent trait distribution, whereas a similar assumption made in categorical confirmatory factor analysis (CCFA) models is the multivariate normality of the latent response variables. Violation of the normality assumption can lead to biased parameter estimates. Although previous studies have focused primarily on unidimensional IRT models, this study extended the literature by considering a multidimensional IRT model for polytomous responses, namely the multidimensional graded response model...
April 6, 2018: Multivariate Behavioral Research
https://www.readbyqxmd.com/read/29624092/at-the-frontiers-of-modeling-intensive-longitudinal-data-dynamic-structural-equation-models-for-the-affective-measurements-from-the-cogito-study
#13
E L Hamaker, T Asparouhov, A Brose, F Schmiedek, B Muthén
With the growing popularity of intensive longitudinal research, the modeling techniques and software options for such data are also expanding rapidly. Here we use dynamic multilevel modeling, as it is incorporated in the new dynamic structural equation modeling (DSEM) toolbox in Mplus, to analyze the affective data from the COGITO study. These data consist of two samples of over 100 individuals each who were measured for about 100 days. We use composite scores of positive and negative affect and apply a multilevel vector autoregressive model to allow for individual differences in means, autoregressions, and cross-lagged effects...
April 6, 2018: Multivariate Behavioral Research
https://www.readbyqxmd.com/read/29624085/on-the-computation-of-the-rmsea-and-cfi-from-the-mean-and-variance-corrected-test-statistic-with-nonnormal-data-in-sem
#14
Victoria Savalei
A new type of nonnormality correction to the RMSEA has recently been developed, which has several advantages over existing corrections. In particular, the new correction adjusts the sample estimate of the RMSEA for the inflation due to nonnormality, while leaving its population value unchanged, so that established cutoff criteria can still be used to judge the degree of approximate fit. A confidence interval (CI) for the new robust RMSEA based on the mean-corrected ("Satorra-Bentler") test statistic has also been proposed...
April 6, 2018: Multivariate Behavioral Research
https://www.readbyqxmd.com/read/29624079/cross-sectional-analysis-of-longitudinal-mediation-processes
#15
Kristine D O'Laughlin, Monica J Martin, Emilio Ferrer
Statistical mediation analysis can help to identify and explain the mechanisms behind psychological processes. Examining a set of variables for mediation effects is a ubiquitous process in the social sciences literature; however, despite evidence suggesting that cross-sectional data can misrepresent the mediation of longitudinal processes, cross-sectional analyses continue to be used in this manner. Alternative longitudinal mediation models, including those rooted in a structural equation modeling framework (cross-lagged panel, latent growth curve, and latent difference score models) are currently available and may provide a better representation of mediation processes for longitudinal data...
April 6, 2018: Multivariate Behavioral Research
https://www.readbyqxmd.com/read/29565691/the-power-to-detect-and-predict-individual-differences-in-intra-individual-variability-using-the-mixed-effects-location-scale-model
#16
Ryan W Walters, Lesa Hoffman, Jonathan Templin
Our goal is to provide empirical scientists with practical tools and advice with which to test hypotheses related to individual differences in intra-individual variability using the mixed-effects location-scale model. To that end, we evaluate Type I error rates and power to detect and predict individual differences in intra-individual variability using this model and provide empirically-based guidelines for building scale models that include random and/or systematically-varying fixed effects. We also provide two power simulation programs that allow researchers to conduct a priori empirical power analyses...
March 22, 2018: Multivariate Behavioral Research
https://www.readbyqxmd.com/read/29565679/testing-mean-differences-among-groups-multivariate-and-repeated-measures-analysis-with-minimal-assumptions
#17
Arne C Bathke, Sarah Friedrich, Markus Pauly, Frank Konietschke, Wolfgang Staffen, Nicolas Strobl, Yvonne Höller
To date, there is a lack of satisfactory inferential techniques for the analysis of multivariate data in factorial designs, when only minimal assumptions on the data can be made. Presently available methods are limited to very particular study designs or assume either multivariate normality or equal covariance matrices across groups, or they do not allow for an assessment of the interaction effects across within-subjects and between-subjects variables. We propose and methodologically validate a parametric bootstrap approach that does not suffer from any of the above limitations, and thus provides a rather general and comprehensive methodological route to inference for multivariate and repeated measures data...
March 22, 2018: Multivariate Behavioral Research
https://www.readbyqxmd.com/read/29558196/more-precise-estimation-of-lower-level-interaction-effects-in-multilevel-models
#18
Tom Loeys, Haeike Josephy, Marieke Dewitte
In hierarchical data, the effect of a lower-level predictor on a lower-level outcome may often be confounded by an (un)measured upper-level factor. When such confounding is left unaddressed, the effect of the lower-level predictor is estimated with bias. Separating this effect into a within- and between-component removes such bias in a linear random intercept model under a specific set of assumptions for the confounder. When the effect of the lower-level predictor is additionally moderated by another lower-level predictor, an interaction between both lower-level predictors is included into the model...
March 20, 2018: Multivariate Behavioral Research
https://www.readbyqxmd.com/read/29558166/virtual-levels-and-role-models-n-level-structural-equations-model-of-reciprocal-ratings-data
#19
Paras D Mehta
A general latent variable modeling framework called n-Level Structural Equations Modeling (NL-SEM) for dependent data-structures is introduced. NL-SEM is applicable to a wide range of complex multilevel data-structures (e.g., cross-classified, switching membership, etc.). Reciprocal dyadic ratings obtained in round-robin design involve complex set of dependencies that cannot be modeled within Multilevel Modeling (MLM) or Structural Equations Modeling (SEM) frameworks. The Social Relations Model (SRM) for round robin data is used as an example to illustrate key aspects of the NL-SEM framework...
March 20, 2018: Multivariate Behavioral Research
https://www.readbyqxmd.com/read/29482374/a-conversation-between-theory-methods-and-data
#20
Steven M Boker, Mike Martin
The 10 year anniversary of the COGITO Study provides an opportunity to revisit the ideas behind the Cattell data box. Three dimensions of the persons × variables × time data box are discussed in the context of three categories of researchers each wanting to answer their own categorically different question. The example of the well-known speed-accuracy tradeoff is used to illustrate why these are three different categories of statistical question. The 200 persons by 100 variables by 100 occasions of measurement COGITO data cube presents a challenge to integrate theories and methods across the dimensions of the data box...
February 26, 2018: Multivariate Behavioral Research
journal
journal
21344
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"