Read by QxMD icon Read

British Journal of Mathematical and Statistical Psychology

Wenchao Ma
Constructed-response items have been shown to be appropriate for cognitively diagnostic assessments because students' problem-solving procedures can be observed, providing direct evidence for making inferences about their proficiency. However, multiple strategies used by students make item scoring and psychometric analyses challenging. This study introduces the so-called two-digit scoring scheme into diagnostic assessments to record both students' partial credits and their strategies. This study also proposes a diagnostic tree model (DTM) by integrating the cognitive diagnosis models with the tree model to analyse the items scored using the two-digit rubrics...
April 23, 2018: British Journal of Mathematical and Statistical Psychology
Yueqin Hu, Raymond Treinen
Differential equation models are frequently used to describe non-linear trajectories of longitudinal data. This study proposes a new approach to estimate the parameters in differential equation models. Instead of estimating derivatives from the observed data first and then fitting a differential equation to the derivatives, our new approach directly fits the analytic solution of a differential equation to the observed data, and therefore simplifies the procedure and avoids bias from derivative estimations...
April 6, 2018: British Journal of Mathematical and Statistical Psychology
Michael J Brusco, Douglas Steinley, Jordan Stevens, J Dennis Cradit
Affinity propagation is a message-passing-based clustering procedure that has received widespread attention in domains such as biological science, physics, and computer science. However, its implementation in psychology and related areas of social science is comparatively scant. In this paper, we describe the basic principles of affinity propagation, its relationship to other clustering problems, and the types of data for which it can be used for cluster analysis. More importantly, we identify the strengths and weaknesses of affinity propagation as a clustering tool in general and highlight potential opportunities for its use in psychological research...
April 6, 2018: British Journal of Mathematical and Statistical Psychology
Jiannan Lu, Yixuan Qiu, Alex Deng
Motivated by the recent replication and reproducibility crisis, Gelman and Carlin (2014, Perspect. Psychol. Sci., 9, 641) advocated focusing on controlling for Type S/M errors, instead of the classic Type I/II errors, when conducting hypothesis testing. In this paper, we aim to fill several theoretical gaps in the methodology proposed by Gelman and Carlin (2014, Perspect. Psychol. Sci., 9, 641). In particular, we derive the closed-form expression for the expected Type M error, and study the mathematical properties of the probability of Type S error as well as the expected Type M error, such as monotonicity...
March 23, 2018: British Journal of Mathematical and Statistical Psychology
Hyeon-Ah Kang, Ya-Hui Su, Hua-Hua Chang
A monotone relationship between a true score (τ) and a latent trait level (θ) has been a key assumption for many psychometric applications. The monotonicity property in dichotomous response models is evident as a result of a transformation via a test characteristic curve. Monotonicity in polytomous models, in contrast, is not immediately obvious because item response functions are determined by a set of response category curves, which are conceivably non-monotonic in θ. The purpose of the present note is to demonstrate strict monotonicity in ordered polytomous item response models...
March 8, 2018: British Journal of Mathematical and Statistical Psychology
Yanlou Liu, Tao Xin, Björn Andersson, Wei Tian
Two new methods to estimate the asymptotic covariance matrix for marginal maximum likelihood estimation of cognitive diagnosis models (CDMs), the inverse of the observed information matrix and the sandwich-type estimator, are introduced. Unlike several previous covariance matrix estimators, the new methods take into account both the item and structural parameters. The relationships between the observed information matrix, the empirical cross-product information matrix, the sandwich-type covariance matrix and the two approaches proposed by de la Torre (2009, J...
March 6, 2018: British Journal of Mathematical and Statistical Psychology
Po-Hsien Huang
In the past two decades, statistical modelling with sparsity has become an active research topic in the fields of statistics and machine learning. Recently, Huang, Chen and Weng (2017, Psychometrika, 82, 329) and Jacobucci, Grimm, and McArdle (2016, Structural Equation Modeling: A Multidisciplinary Journal, 23, 555) both proposed sparse estimation methods for structural equation modelling (SEM). These methods, however, are restricted to performing single-group analysis. The aim of the present work is to establish a penalized likelihood (PL) method for multi-group SEM...
March 3, 2018: British Journal of Mathematical and Statistical Psychology
Fien Gistelinck, Tom Loeys, Mieke Decuyper, Marieke Dewitte
When considering dyadic data, one of the questions is whether the roles of the two dyad members can be considered equal. This question may be answered empirically using indistinguishability tests in the actor-partner interdependence model. In this paper several issues related to such indistinguishability tests are discussed: the difference between maximum likelihood and restricted maximum likelihood based tests for equality in variance parameters; the choice between the structural equation modelling and multilevel modelling framework; and the use of sequential testing rather than one global test for a set of indistinguishability tests...
February 15, 2018: British Journal of Mathematical and Statistical Psychology
Nicolas Gauvrit, Fabien Mathy
The time-based resource sharing (TBRS) model is a prominent model of working memory that is both predictive and simple. TBRS is a mainstream decay-based model and the most susceptible to competition with interference-based models. A connectionist implementation of TBRS, TBRS*, has recently been developed. However, TBRS* is an enriched version of TBRS, making it difficult to test general characteristics resulting from TBRS assumptions. Here, we describe a novel model, TBRS2, built to be more transparent and simple than TBRS*...
February 2018: British Journal of Mathematical and Statistical Psychology
Zijun Ke, Zhiyong Johnny Zhang
Autocorrelation and partial autocorrelation, which provide a mathematical tool to understand repeating patterns in time series data, are often used to facilitate the identification of model orders of time series models (e.g., moving average and autoregressive models). Asymptotic methods for testing autocorrelation and partial autocorrelation such as the 1/T approximation method and the Bartlett's formula method may fail in finite samples and are vulnerable to non-normality. Resampling techniques such as the moving block bootstrap and the surrogate data method are competitive alternatives...
February 2018: British Journal of Mathematical and Statistical Psychology
Wolfgang Wiedermann, Edgar C Merkle, Alexander von Eye
Methods to determine the direction of a regression line, that is, to determine the direction of dependence in reversible linear regression models (e.g., x→y vs. y→x), have experienced rapid development within the last decade. However, previous research largely rested on the assumption that the true predictor is measured without measurement error. The present paper extends the direction dependence principle to measurement error models. First, we discuss asymmetric representations of the reliability coefficient in terms of higher moments of variables and the attenuation of skewness and excess kurtosis due to measurement error...
February 2018: British Journal of Mathematical and Statistical Psychology
Anthony J Bishara, Jiexiang Li, Thomas Nash
When bivariate normality is violated, the default confidence interval of the Pearson correlation can be inaccurate. Two new methods were developed based on the asymptotic sampling distribution of Fisher's z' under the general case where bivariate normality need not be assumed. In Monte Carlo simulations, the most successful of these methods relied on the (Vale & Maurelli, 1983, Psychometrika, 48, 465) family to approximate a distribution via the marginal skewness and kurtosis of the sample data. In Simulation 1, this method provided more accurate confidence intervals of the correlation in non-normal data, at least as compared to no adjustment of the Fisher z' interval, or to adjustment via the sample joint moments...
February 2018: British Journal of Mathematical and Statistical Psychology
Jolien Cremers, Kees Tim Mulder, Irene Klugkist
The interpretation of the effect of predictors in projected normal regression models is not straight-forward. The main aim of this paper is to make this interpretation easier such that these models can be employed more readily by social scientific researchers. We introduce three new measures: the slope at the inflection point (bc ), average slope (AS) and slope at mean (SAM) that help us assess the marginal effect of a predictor in a Bayesian projected normal regression model. The SAM or AS are preferably used in situations where the data for a specific predictor do not lie close to the inflection point of a circular regression curve...
February 2018: British Journal of Mathematical and Statistical Psychology
Guogen Shan, Charles Bernick, Sarah Banks
This research was motivated by a clinical trial design for a cognitive study. The pilot study was a matched-pairs design where some data are missing, specifically the missing data coming at the end of the study. Existing approaches to determine sample size are all based on asymptotic approaches (e.g., the generalized estimating equation (GEE) approach). When the sample size in a clinical trial is small to medium, these asymptotic approaches may not be appropriate for use due to the unsatisfactory Type I and II error rates...
February 2018: British Journal of Mathematical and Statistical Psychology
Wolf Schwarz, Dennis Reike
Using a standard repeated measures model with arbitrary true score distribution and normal error variables, we present some fundamental closed-form results which explicitly indicate the conditions under which regression effects towards (RTM) and away from the mean are expected. Specifically, we show that for skewed and bimodal distributions many or even most cases will show a regression effect that is in expectation away from the mean, or that is not just towards but actually beyond the mean. We illustrate our results in quantitative detail with typical examples from experimental and biometric applications, which exhibit a clear regression away from the mean ('egression from the mean') signature...
February 2018: British Journal of Mathematical and Statistical Psychology
Maria Bolsinova, Jesper Tijmstra
By considering information about response time (RT) in addition to response accuracy (RA), joint models for RA and RT such as the hierarchical model (van der Linden, 2007) can improve the precision with which ability is estimated over models that only consider RA. The hierarchical model, however, assumes that only the person's speed is informative of ability. This assumption of conditional independence between RT and ability given speed may be violated in practice, and ignores collateral information about ability that may be present in the residual RTs...
February 2018: British Journal of Mathematical and Statistical Psychology
Tamar Kennet-Cohen, Dvir Kleper, Elliot Turvall
A frequent topic of psychological research is the estimation of the correlation between two variables from a sample that underwent a selection process based on a third variable. Due to indirect range restriction, the sample correlation is a biased estimator of the population correlation, and a correction formula is used. In the past, bootstrap standard error and confidence intervals for the corrected correlations were examined with normal data. The present study proposes a large-sample estimate (an analytic method) for the standard error, and a corresponding confidence interval for the corrected correlation...
February 2018: British Journal of Mathematical and Statistical Psychology
Yoosun Jamie Kim, Robert A Cribbie
Valid use of the traditional independent samples ANOVA procedure requires that the population variances are equal. Previous research has investigated whether variance homogeneity tests, such as Levene's test, are satisfactory as gatekeepers for identifying when to use or not to use the ANOVA procedure. This research focuses on a novel homogeneity of variance test that incorporates an equivalence testing approach. Instead of testing the null hypothesis that the variances are equal against an alternative hypothesis that the variances are not equal, the equivalence-based test evaluates the null hypothesis that the difference in the variances falls outside or on the border of a predetermined interval against an alternative hypothesis that the difference in the variances falls within the predetermined interval...
February 2018: British Journal of Mathematical and Statistical Psychology
Shaobo Jin, Chunzheng Cao
The polychoric instrumental variable (PIV) approach is a recently proposed method to fit a confirmatory factor analysis model with ordinal data. In this paper, we first examine the small-sample properties of the specification tests for testing the validity of instrumental variables (IVs). Second, we investigate the effects of using different numbers of IVs. Our results show that specification tests derived for continuous data are extremely oversized at all sample sizes when applied to ordinal variables. Possible modifications for ordinal data are proposed in the present study...
January 11, 2018: British Journal of Mathematical and Statistical Psychology
Oscar L Olvera Astivia, Bruno D Zumbo
The Fleishman third-order polynomial algorithm is one of the most-often used non-normal data-generating methods in Monte Carlo simulations. At the crux of the Fleishman method is the solution of a non-linear system of equations needed to obtain the constants to transform data from normality to non-normality. A rarely acknowledged fact in the literature is that the solution to this system is not unique, and it is currently unknown what influence the different types of solutions have on the computer-generated data...
January 11, 2018: British Journal of Mathematical and Statistical Psychology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"